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Abstract The dynamics of simple discrete-time epidemic models without disease-
induced mortality are typically characterized by global transcritical bifurcation. We
prove that in corresponding models with disease-induced mortality a tiny number of
infectious individuals can drive an otherwise persistent population to extinction. Our
model with disease-induced mortality supports multiple attractors. In addition, we
use a Ricker recruitment function in an SIS model and obtained a three component
discrete Hopf (Neimark–Sacker) cycle attractor coexisting with a fixed point attrac-
tor. The basin boundaries of the coexisting attractors are fractal in nature, and the
example exhibits sensitive dependence of the long-term disease dynamics on initial
conditions. Furthermore, we show that in contrast to corresponding models without
disease-induced mortality, the disease-free state dynamics do not drive the disease
dynamics.

Keywords Basin of attraction · Disease-induced mortality · Multiple attractors

Mathematics Subject Classification (2000) 37G15 · 37G35 · 39A11 · 92B05

1 Introduction

The consequences of disease-induced mortality on disease dynamics have been stud-
ied quite extensively since the first development of mathematical epidemiology [4,5,
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22,30]. However, detailed studies of the interactions between density dependent birth
or recruitment processes and disease-induced mortality are rare [1,2,6]. In recent
papers, Hwang and Kuang [20,21,23] as well as Berezovsky et al. [6,7] illustrated
surprising dynamics in a simple continuous-time susceptible-infected (SI) model with
variable population size and disease-induced mortality. The SI model supports mul-
tiple attracting equilibria. Berezovsky et al. [6,7] used Briot-Bouquet (blowing-up)
transformations of the singular point at the origin to show, via the existence of homo-
clinic orbits, a tiny number of infectious individuals igniting a disease outbreak in the
simple continuous-time model. We prove that a tiny number of infectious individuals
can drive an otherwise persistent population to extinction.

In this paper, we focus on discrete-time SIS epidemic models with disease-induced
mortality. Viral infections, such as most infections from rhinoviruses (causative agents
of the common cold) are examples of such infections. Since a mild rhinovirus infection
is a non-fatal infection that occurs mostly in humans and other higher primates, it
does not quite fit our discrete-time scale model framework. However, such non-fatal
infections could impede the immune system and hence decrease the survivability of the
infected individual. The change in survivability is illustrative of the type of biological
reality being modeled. Our primary focus is on the impact of disease-induced mortality
on discrete-time SIS epidemic models. Castillo-Chavez and Yakubu [9–11], Franke
and Yakubu [15,16,33] as well as Rios-Soto et al. [29] have studied corresponding
models without disease-induced mortality. For the model without disease induced
mortality, Castillo-Chavez and Yakubu, computed the epidemic threshold parameter,
R0, and used it to prove that if R0 < 1 then the disease goes extinct whereas R0 > 1
implies the disease is endemic. When the demographic dynamics is asymptotically
constant, Castillo-Chavez and Yakubu proved that local stability of the disease-free
and endemic equilibria is actually a global property. That is, the disease dynamics is
characterized by a global transcritical bifurcation.

The long-term dynamics of our model with disease-induced mortality depends on
three threshold parameters, the basic reproduction number (R0), and two demographic
threshold parameters (RD1 and RD2 ). The total population is persistent whenever
RD2 > 1 whereas it goes extinct at small initial population values whenever RD1 < 1.
In this paper, we prove that R0 < 1 implies disease extinction whereas R0 > 1 and
RD2 > 1 imply disease persistence.

In addition, we prove that our model exhibits multiple attractors. Other more realis-
tic epidemic models, for example HIV models, are known to support multiple attractors
[14,17,18,32]. When the recruitment function is the Ricker map, our simple SIS model
exhibits sensitive dependence of the long-term dynamics on positive initial popula-
tion sizes, where the disease-free state is on a globally attracting equilibrium point.
In addition, we prove via the existence of a globally asymptotically stable fixed point
that our model under geometric growth rate exhibits the transcritical bifurcation with
or without disease-induced mortality.

The paper is organized as follows: In Sect. 2, we introduce the discrete-time SIS
model with disease-induced mortality. We obtain, in Sect. 3, preliminary results on
the qualitative dynamics of our model. In Sect. 4, the three threshold parameters R0,
RD1 and RD2 are computed and used to study the long-term qualitative dynamics of
our model. Also in Sect. 4, we use the Beverton–Holt recruitment function [8,19] to
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illustrate disease induced extinction of the total population where R0 > 1. Conditions
for the support of multiple fixed points are derived in Sect. 5. Also in Sect. 5, specific
examples are used to demonstrate coexisting attracting fixed points in our model. The
basins of the multiple attracting fixed points are relatively simple. Complex basin
structures are highlighted in Sect. 6 [3]. In particular, we use the Ricker recruitment
function [28] to illustrate two coexisting attractors, a three component Hopf (Neimark–
Sacker [31]) cycle attractor and a fixed point attractor, with fractal basin boundaries. In
these examples, the SIS epidemic model is under asymptotically constant disease-free
dynamics and infections are modeled as Poisson processes [9]. Section 7 is on the
effects of geometric growth recruitment functions in our SIS model, and concluding
remarks are presented in Sect. 8.

2 SIS epidemic model with disease induced death

Our SIS epidemic model is built under the assumption that the dynamics of the total
population size are governed by the equation

N (t + 1) = f (N (t)) + γ1S(t) + γ2 I (t), (1)

where at generation t, S (t) denotes the susceptible population; I (t) the infected pop-
ulation (assumed infectious); and N (t) ≡ S (t) + I (t) the total population size.
The function f (N ) ∈ C1(R+, R+) models the birth or recruitment process, and
γ1, γ2 ∈ (0, 1) are respectively the constant “probabilities” of the susceptible and
infective individuals surviving per generation. To include disease induced mortality in
our epidemic model, we assume throughout that γ1 ≥ γ2. Consequently, an infected
individual has a lesser chance than a susceptible individual to survive one generation.

When γ = γ1 = γ2, all individuals (susceptibles and infectives) have equal proba-
bility of surviving one generation and Model (1) reduces to the demographic equation

N (t + 1) = f (N (t)) + γ N (t). (2)

Beverton–Holt’s model and Ricker’s model are classic discrete-time single-species
population models that give the population density of the species at generation t + 1
as a function of the density at generation t . The Beverton–Holt and Ricker models
have been used to model contest and scramble intraspecific competitions, respectively
[8,12,19,24–28]. In papers that we coauthored [9–11,15,16], we studied Model (2)
with the constant recruitment function,

f (N (t)) = �,

with the Beverton–Holt recruitment function,

f (N (t)) = µk N (t)

k + (µ − 1)N (t)
,
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and with the Ricker recruitment function,

f (N (t)) = N (t)e
r
(

1− N (t)
k

)
,

where the carrying capacity of the environment is k. In the Beverton–Holt (respectively,
Ricker) recruitment function, µ > 1 (respectively, r > 0) is the intrinsic growth rate.
With these choices of f, Model (2) is known to have a globally attracting positive fixed
point denoted by N∞ whenever � > 0, µ > 1, and 0 < r <

2+(1−γ ) ln(1−γ )
1−γ

[10,26].

When r >
2+(1−γ ) ln(1−γ )

1−γ
and the recruitment function is the Ricker model, Model

(2) undergoes period doubling bifurcations route to chaos [11,13,15,16,24–26].
When new recruits arrive at the positive per-capita growth rate µ, then

f (N (t)) = µN (t),

and the solution of Eq. (2) is

N (t) = (γ + µ)t N (0).

Consequently, the demographic basic reproductive number is

RD = µ

1 − γ
.

If RD < 1, the total population goes extinct at a geometric rate, and if RD > 1, the
total population explodes at a geometric rate.

Even though our model is deterministic and does not attempt to capture stochastic
phenomenon at low population levels, we use probability terminology to describe some
of the model parameters. To introduce the deterministic SIS model, we assume that
infective individuals recover with constant probability (1 − σ). Furthermore, assume
that the escape function

φ : [0,∞) → [0, 1]

is a monotone convex probability function with φ(0) = 1 and φ′(x) ≤ 0 for all
x ∈ [0,∞). Also, we assume that the susceptible individuals become infected with
non-linear probability

(
1 − φ

(
α I

N

))
per generation, where the transmission constant

α > 0.
When infections are modeled as Poisson processes, for example, then φ

(
α I

N

) =
e−α I

N [10,16,29]. When φ (x) = e−x then φ′′(x) ≥ 0 for all x ∈ [0,∞). To model
this constraint in our SIS model, we also assume that the escape function φ is concave
up and satisfies φ′′(x) ≥ 0 for all x ∈ [0,∞).

Our assumptions and notation lead to the following SI S epidemic model with
disease induced mortality:
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Table 1 Model parameters and functions

Parameter Description

γ1 Survival “probability” of susceptible individuals per generation;

γ2 Survival “probability” of infective individuals per generation;

α Transmission constant;

(1 − σ) Recovery “probability” of infective individuals per generation;

φ Frequency-dependent escape “probability” function;

f Birth or recruitment function;

RD Demographic basic reproductive number

S(t + 1) = f (N (t)) + γ1φ
(
α

I (t)
N (t)

)
S(t) + γ2(1 − σ)I (t)

I (t + 1) = γ1

(
1 − φ

(
α

I (t)
N (t)

))
S(t) + γ2σ I (t)

⎫
⎪⎬
⎪⎭

, (3)

where 0 < γ2 < γ1 < 1, 0 < σ < 1 and N (t) > 0. Below, we summarize some of
the underlying assumptions in Model (3).

(a) The disease increases mortality but does not affect fecundity;
(b) There is no acquired immunity;
(c) There is no latent period (or it is very short);
(d) Transmission is frequency dependent rather than density dependent.

A fair amount of theoretical and empirical work has been done to compare these
assumptions. In continuous-time models, it is known that these assumptions are not
universally applicable [4]. Our model parameters and functions are summarized in
Table 1.

Our model is a deterministic SIS epidemic model and has no “probability” of
transmission. The assumption of deterministic dynamics is valid in a large popula-
tion, where stochasticity is unimportant. This assumption places a constraint on the
applicability of our model. For example, stochastic transmission (including a Poisson
process) in a small population (close to extinction) would not be described by our SIS
model.

Model (3) reduces to the SIS epidemic model of Castillo-Chavez and Yakubu
[9–11] when there is no disease induced mortality and γ1 = γ2. In Model (3), the
total population in generation t + 1 (N (t + 1) = S(t + 1) + I (t + 1)), the sum of the
two equations of Model (3), is Eq. (1).

If the disease is not present (I (t) = 0), then N (t) = S(t) and our SIS model
reduces to the equation

S(t + 1) = f (S(t)) + γ1S(t). (4)

Equation (4) describes the population dynamics of the disease-free state. When this
equation has a positive fixed point, we denote it by S∞ > 0. Consequently, the point
(S∞, 0) is a disease-free equilibrium point of Model (3).
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To understand the impact of disease-induced mortality on disease dynamics, we
will study Model (3) under specific functional forms for the recruitment function f .
In particular, we will study the epidemic model under constant, constant per-capita
(geometric growth), Beverton–Holt and Ricker recruitment functions. These recruit-
ment functions are commonly found in the literature [8,10,11,27,28].

3 Preliminary results

Here, we obtain some auxiliary results that will be used to study disease persistence
and extinction in our SIS model. In the following result, we obtain one-variable bounds
on the total population of our two-dimensional model.

Lemma 1 In Model (3),

f (N (t)) + γ2 N (t) ≤ N (t + 1) ≤ f (N (t)) + γ1 N (t).

Proof of Lemma 1 is in the Appendix.
Using the substitution S(t) = N (t) − I (t), the I -equation and the N -equation in

Model (3) become

I (t + 1) = γ1

(
1 − φ

(
α

I (t)

N (t)

))
(N (t) − I (t)) + γ2σ I (t)

and

N (t + 1) = f (N (t)) + γ1(N (t) − I (t)) + γ2 I (t),

respectively.
On the closed interval [0, N ], let

FN (I ) = γ1

(
1 − φ

(
α

I

N

))
(N − I ) + γ2σ I

and

G N (I ) = f (N ) + γ1(N − I ) + γ2 I.

When FN has a unique positive fixed point and a unique critical point, we denote
them by IN and CN , respectively. The sets of sequences generated by

I (t + 1) = FN (t)(I (t))

and

N (t + 1) = G N (t)(I (t))
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are the sets of density sequences generated by the infective and the total population
equations, respectively. Franke and Yakubu [16], used the map FN with γ = γ1 = γ2
to study disease dynamics in periodically forced SIS epidemic models.

To study Model (3), we need the following results on the properties of FN and G N .

Lemma 2 FN (I ) and G N (I ) satisfy the following conditions.

(a) If 0 ≤ I ≤ N , then FN (I ) ≤ min{N , G N (I )} with equality if and only if
(N , I ) = (0, 0).

(b) F ′
N (0) = −αγ1φ

′ (0) + γ2σ and F ′
N (N ) > −1.

(c) FN (I ) is concave down on [0, N ].
(d) FN (I ) ≤ F ′

N (0)I on [0, N ].
(e) If F ′

N (0) > 1, then FN has a unique positive fixed point IN in [0, N ].
(f) F1(

I
N ) = 1

N FN (I ). That is, the frequency dependent F1 is equal to the ratio of
the density dependent FN and the total population size.

(g) If N0 < N1 and F ′
N (0) > 1, then IN0 < IN1 where INi is the positive fixed

point of FNi in [0, Ni ]. In general, the fixed point for FN is N I1.

(h) If C1 exists, then CN = NC1.

(i) If N0 < N1, then FN0(I ) < FN1(I ) for all I ∈ (0, N0].
The proof of Lemma (2) is in the Appendix.
Next, we obtain the invariance of the positive quadrant.

Lemma 3 In Model (3),

(a) If I (0) > 0 then I (t) > 0 ∀ t ∈ Z+.

(b) If N (0) > 0 then N (t) > 0 ∀ t ∈ Z+.

Proof of Lemma 3 is in the Appendix.

4 Disease extinction or persistence

To study the qualitative dynamics of Model (3), we define the map

H : {(N , I )|0 ≤ I ≤ N } → {(N , I )|0 ≤ I ≤ N }

by

H(N , I ) = (G N (I ), FN (I )).

Lemmas (2) and (3) show that the set of iterates of the dynamical system H on
{(N , I )|0 ≤ I ≤ N } is equivalent to set of density sequences generated by Model (3),
where Ht

i (N , I ) denotes the i th component of the t th iterate (under H ) of the initial
condition (N , I ).

The point (N∗, I ∗) is a positive fixed point of H if

H(N∗, I ∗) = (N∗, I ∗)

and 0 < I ∗ ≤ N∗.
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Definition 4 The total population is uniformly persistent under H if there exists a
constant η > 0 such that

lim
t→∞

Ht
1(N , I ) ≡ lim

t→∞ inf Ht
1(N , I ) ≥ η

for every non-zero initial condition.

The total population is said to be persistent under H if limt→∞Ht
1(N , I ) > 0

[16,34]. Consequently, uniform persistence implies the persistence of the total
population.

Definition 5 The total population is driven to extinction under H if

lim
t→∞Ht

1(N , I ) = 0

for every initial condition.

For each i ∈ {1, 2}, define

Di : [0,∞) → [0,∞)

by

Di (N ) = f (N ) + γi N , (5)

and let

RDi = f ′(0)

1 − γi
whenever f (0) = 0.

The auxiliary functions FN , G N , H and Di will be used throughout, and their
biological meanings are summarized in Table 2.

Recall that f (N ) ∈ C1(R+, R+). Thus, f (0) = 0 implies that RDi ≥ 0 for
i ∈ {1, 2}. In our epidemic model, γ1 > γ2 implies that RD1 > RD2 . That is, the
disease-free demographic basic reproduction number (Lemma 6) is greater than that of
the total population (Lemma 7). Lemmas (6) and (7) give sufficient conditions for the
persistence of the disease-free state susceptible population and the total population,
respectively.

Table 2 Auxiliary functions

Auxiliary function Meaning

Di (N ) = f (N ) + γi N Total population of new births and survivors;

FN (I ) = γ1

(
1 − φ

(
α I

N

))
(N − I ) + γ2σ I Infective population in the next generation;

G N (I ) = f (N ) + γ1(N − I ) + γ2 I Total population in the next generation;

H(N , I ) = (G N (I ), FN (I )) Vector of the total and infective populations.
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Lemma 6 Let f (0) = 0. If RD1 > 1, then the disease-free susceptible population
described by Eq. (4) is persistent. However, if RD1 < 1 then {(0, 0)} is locally asymp-
totically stable in Model (3), and both the susceptible and infected populations go
extinct at low values of initial population sizes.

The proof of Lemma 6 is in the Appendix.
By Lemma (6), RD1 is the disease-free state demographic basic reproduction

number.

Lemma 7 If either f (0) > 0 or f (0) = 0 and RD2 > 1, then the total population is
uniformly persistent.

The proof of Lemma 7 is in the Appendix.
By Lemma (7), the total population is uniformly persistent when

f (N ) = �,

or

f (N ) = µk N

k + (µ − 1)N

and

µ > 1 − γ2,

or

f (N ) = Ne
r
(

1− N
k

)

and

r > 0 > ln (1 − γ2) .

In Lemma (8), the object under study is the large population per capita growth rate.

Lemma 8 If

lim
N→∞

f (N ) + γ1 N

N
≡ lim

N→∞ sup
f (N ) + γ1 N

N
< 1,

then there is a compact subset, W, of {(N , I )|0 ≤ I ≤ N } that attracts all initial
conditions under H iterations. That is, there is no population explosion.

The proof of Lemma 8 is in the Appendix.
Let

R0 = −γ1αφ′(0)

1 − γ2σ
. (6)
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The expression 1
1−γ2σ

denotes the average death-adjusted length of the infectious
period in generations; γ1 is the proportion of surviving susceptibles who can be invaded
by the disease; and, −αφ

′
(0) is the maximum rate of infection per infective [11].

Thus, R0 may be viewed as the average value of the expected number of secondary
cases produced by a single infected individual entering the population at the infectious-
free state. R0 is the basic reproduction number for Model (3).

When γ = γ1 = γ2, our R0 reduces to that of the SIS epidemic model of Castillo-
Chavez and Yakubu [9–11] without disease induced mortality. Next, we prove that
R0 < 1 implies disease extinction whereas R0 > 1 together with the persistence of
the total population implies persistence of the disease.

Theorem 9 In Model (3), let N (0) ≥ I (0) > 0.

(a) If R0 < 1, then limt→∞ I (t) = 0. That is, the disease goes extinct.
(b) If R0 > 1 and the total population is uniformly persistent, then there exists a

constant η > 0 such that limt→∞ I (t) ≥ η > 0. That is, the disease is uniformly
persistent.

Proof Since I (0) ≤ N (0), Lemma (2) implies that I (t) ≤ N (t) for all t ∈ Z+.

(a)

R0 = −γ1αφ′(0)

1 − γ2σ
< 1

is equivalent to

−αγ1φ
′ (0) + γ2σ < 1.

Lemma (2) gives

F ′
N (0) = F ′

N (t)(0) = −αγ1φ
′ (0) + γ2σ < 1

and

I (t + 1) = FN (t)(I (t)) ≤ F ′
N (t)(0)I (t).

Thus, the sequence {I (t)} is dominated by the geometrically decreasing sequence
{(−αγ1φ

′ (0) + γ2σ
)t

I (0)} and hence,

lim
t→∞I (t) = 0.

(b) By Lemma (3), since I (0) > 0 we have I (t) > 0 for all t ∈ Z+. Lemma (2)
gives

F ′
N (0) = F ′

N (t)(0) = −αγ1φ
′ (0) + γ2σ.
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R0 > 1 implies F ′
N (t)(0) > 1 and the unique positive fixed point IN (t) exists

(Lemma 2). Since

I (t + 1) = FN (t)(I (t)), I (t + 1) > I (t)

on the open interval
(
0, IN (t)

)
. If I (t) ∈ (IN (t), N (t)),

I (t + 1) ≥ min{IN (t) = N (t)I1, FN (t)(N (t)) = γ2σ N (t)}.

Since the total population is uniformly persistent,

lim
t→∞

Ht
1(N (0), I (0)) = lim

t→∞
N (t) ≥ η1 > 0.

This implies

lim
t→∞

min{IN (t) = N (t)I1, FN (t)(N (t)) = γ2σ N (t)} > 0.

Thus, the orbit {I (t)} increases when it is small, and eventually gets larger and
remains larger than a fixed positive number η. Hence,

lim
t→∞

I (t) ≥ η > 0.


�
Without disease induced mortality, it is known that R0 > 1 implies disease persis-

tence in our SIS model [9–11]. With disease induced mortality, we obtain sufficient
conditions that guarantee global total population extinction, where R0 > 1. That is,
we obtain that independent of initial population size of healthy individuals, a tiny
number of infectious individuals can drive the total population to extinction.

Theorem 10 Let R0 > 1, f (0) = 0 and f (N ) ≤ f ′(0)N for all N > 0. Then there
is a function, ς = ς(γ1, γ2, φ, α, σ, F1) > 1, such that if 1 < RD1 < ς then the total
population goes extinct under H iteration whenever I (0) > 0.

Proof Let 0 < β ≤ 1. Now, we investigate the ray through the origin with slope β. If a
positive initial condition (N (0), I (0)) is on this ray then I (0) = βN (0). To calculate
the slope of the ray that contains the image of this point under H , we have

FN (I ) = FN (βN ) = F1(β)N ,

and

G N (I ) = G N (βN ) = f (N ) + (γ1(1 − β) + γ2β) N .
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The new slope is

FN (βN )

G N (βN )
= F1(β)N

f (N ) + (γ1(1 − β) + γ2β) N
.

Since f (N ) ≤ f ′(0)N for all N > 0,

FN (βN )

G N (βN )
≥ F1(β)

f ′(0) + (γ1(1 − β) + γ2β)
. (7)

Let

ε1 = (R0 − 1)(1 − γ1σ)

2γ1
.

Note that ε1 is a function of γ1, γ2, σ, φ and α. However, it is not a function of f .
We have

γ1ε1 (1 − γ2σ) <
(−αγ1φ

′(0) − (1 − γ2σ)
)
(1 − γ1σ)

and hence,

1 < −αγ1φ
′(0) + γ2σ − γ1ε1

1 − γ2σ

1 − γ1σ
.

Since F1(β) is differentiable, F1(0) = 0, and F ′
1(0) = −αγ1φ

′(0) + γ2σ there is a
neighborhood U1 = (−a, β0) of 0, such that if β ∈ U1 then

F1(β) >

(
−αγ1φ

′(0) + γ2σ − γ1ε1
1 − γ2σ

1 − γ1σ

)
β > β.

Note that β0 is independent of f . Let

ς1 = −αγ1φ
′(0) + γ2σ − γ1ε1

1 − γ2σ

1 − γ1σ
> 1.

Note that the expression ς1 is a function of γ1, γ2, σ, φ and α. However, it is not a
function of f .

RD1 < ς1

implies

0 ≤ f ′(0) < ς1 (1 − γ1) , and

f ′(0) + ς1γ1 < ς1.
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Choose 0 < ε2 < 1 such that

f ′(0) + ς1γ1 = (1 − ε2)ς1.

Note that ε2 depends on f.
Thus,

f ′(0) + γ1(1 − β) + γ2β ≤ f ′(0) + γ1

≤ f ′(0) + ς1γ1

= (1 − ε2)ς1.

Hence, if β ∈ U1 then the new slope

FN (βN )

G N (βN )
>

F1(β)

f ′(0) + γ1(1 − β) + γ2β

>
ς1β

(1 − ε2)ς1
= 1

1 − ε2
β.

That is, if a positive initial condition is on a ray through the origin with small slope,
then the image will be on a ray through the origin with a larger slope. In fact, the slope
grows by a factor larger than 1. In particular, if 0 < β < β0 then the new slope is
bigger than the original slope; and in a finite number of iterations the slope becomes
larger than β0.

Next, let the positive initial condition be on a ray through the origin with slope β ≥
β0. Then the new slope satisfies Inequality (7). RD1 < ς1 implies f ′(0) < ς1(1−γ1).
Hence, f ′(0) + γ1(1 − β) + γ2β < ς1(1 − γ1) + γ1(1 − β) + γ2β. Thus,

FN (βN )

G N (βN )
≥ F1(β)

f ′(0) + (γ1(1 − β) + γ2β)
≥ F1(β)

ς1(1 − γ1) + γ1(1 − β) + γ2β
.

Since F1(β) and ς1(1−γ1)+γ1(1−β)+γ2β are continuous and positive on [β0, 1],
the new slopes have a positive lower bound, βm > 0, which is independent of f.

If the positive initial condition is on a ray through the origin with slope

1 ≥ β ≥ β = min {β0, βm} ,

then the new slope either grows and is larger than β or it decreases but must be larger
than βm . Note that β is independent of f.

We now need to show that the total population decreases when β ≥ β. This will be
accomplished by taking 1 < RD1 < ς2 for some appropriate ς2 that is independent
of f .

Let

ε3 = β (γ1 − γ2)

2(1 − γ1)
> 0
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and

ς2 = 1 + ε3.

Note that ε3 and ς2 are independent of f . By hypotheses

f (N ) ≤ f ′(0)N .

Let

1 < RD1 < ς2 = 1 + ε3

= 1 + β (γ1 − γ2)

2(1 − γ1)
.

Hence,

f ′(0)

1 − γ1
< 1 + ε3 = 1 + β (γ1 − γ2)

2(1 − γ1)

and

f ′(0) < (1 − γ1)

(
1 + β (γ1 − γ2)

2(1 − γ1)

)
.

Consequently,

G N (βN ) = f (N ) + (γ1(1 − β) + γ2β) N

≤ ( f ′(0) + γ1(1 − β) + γ2β)N

≤
(

f ′(0) + β

2
(γ1 − γ2) + γ1(1 − β) + γ2β

)
N

≤
(

(1 − γ1)

(
1 + β (γ1 − γ2)

2(1 − γ1)

)
+ β

2
(γ1 − γ2) + γ1(1 − β) + γ2β

)
N

= (
1 + β (γ1 − γ2) − β (γ1 − γ2)

)
N ≤ N .

Note that if N > 0, then G N (βN ) < N . In fact, since f ′(0) + γ1(1 − β) + γ2β < 1
the total population decreases by a factor less than 1. So if I (0) > 0, then the slopes
of the iterates increase until in a finite number of iterations it is larger than β. Then
the total population decreases at a rate less than 1. Consequently, if 1 < RD1 < ς =
min{ς1, ς2} all positive initial conditions converge to the origin and the total population
is driven to extinction, where ς = ς(γ1, γ2, φ, α, σ, F1) and is independent of f . 
�
Remark 11 From the proof of Theorem (10), 1 < RD1 < ς = min{ς1, ς2} implies

f
′
(0) < ς2(1 − γ1) = (1 − γ1) + β(γ1−γ2)

2 ≤ (1 − γ2). That is, 1 < RD1 < ς =
min{ς1, ς2} implies RD2 < 1.
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Remark 12 Since ς = ς(γ1, γ2, φ, α, σ, F1) in Theorem (10) is independent of f
whereas RD1 is dependent on f , there are possible values of f

′
(0) such that 1 <

RD1 < ς = min{ς1, ς2} (see Example 13).

In Model (3), it is known that when γ1 = γ2, there is no disease induced mortality,
andRD1 > 1 implies the persistence of the infective population, where R0 > 1 [9–11].
Next, we use the Beverton–Holt recruitment function to illustrate a disease induced
extinction of the total population in Model (3), where R0 > 1, RD1 > 1,RD2 < 1
and γ1 > γ2.

Example 13 Consider Model (3) with the Beverton–Holt recruitment function

f (N ) = aN

1 + bN

and

φ

(
α I

N

)
= e− α I

N ,

where

0.1 < a < 0.2, b = 1, α = 5, γ1 = 0.9, γ2 = 0.8, and σ = 0.9.

In Example (13),

RD1 = a

1 − γ1
>

0.1

1 − 0.9
= 1

implies the persistence of the susceptible population in the absence of the disease
(Lemma 6), where

RD2 = a

1 − γ2
<

0.2

1 − 0.8
= 1.

With our choice of parameters, the disease-free dynamics are governed by the
Beverton–Holt model with survivors. That is, in the absence of the disease, the
susceptible population live on a globally attracting positive fixed point. Moreover,
R0 = αγ1

1−γ2σ
= 16. 071 > 1, f ′(0) = a, f (0) = 0, and f is concave down so

f (N ) ≤ f ′(0)N for all N . Hence, all of the hypotheses of Theorem (10) are satisfied
and our numerical results show that 0.1 < a < 0.177 gives the extinction of the total
population predicted by the theorem (see Fig. 1).

To illustrate the region that leads to extinction in (a, γ2) − parameter space of
the Beverton–Holt model, we continuously vary the intrinstic growth rate a between 0
and 1, and γ2 between 0 and 0.9 where all the other parameters are kept fixed at their
current values in Example (13) with γ2 < γ1. Figure 2 shows that in (a, γ2)-space,
the species goes extinct at low values of the intrinsic growth rate whenever RD2 < 1.
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Fig. 1 The initial condition (1.1, 0.1) converges to (0, 0), while the initial conditions (0.1, 0) and (1, 0)
converge to (0.5, 0). All the parameters are exactly as in Example (13) with a = 0.15

Fig. 2 Region that leads to extinction in (a, γ2) parameter space of Example (13), where on the horizontal
axis 0 < a < 1 and on the vertical axis 0 < γ2 < 0.9

However, the species persists at high values of the intrinsic growth rate whenever
RD2 < 1 and the survival “probability” of infective individuals, γ2, is low.

5 Multiple attractors

Discrete-time SIS epidemic models with no disease induced mortality are known
to exhibit single global attractors (not coexisting multiple attractors), whenever the
disease-free state dynamics supports a single global attractor. Age structure, dispersal
and periodic forcing are examples of biological factors that are known to generate
multiple attractors in ecological and epidemiological models. Here, we demonstrate
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that disease induced mortality can generate multiple attractors in simple SIS epidemic
models.

Next, we provide sufficient conditions that guarantee the occurrence of more than
one positive fixed point in our model.

Theorem 14 Let limN→∞ f (N )+γ1 N
N < 1. If RD2 > 1 and there are two positive

numbers N0 < N1 with G N0(I1 N0) < N0 and G N1(I1 N1) > N1, then H has at least
two positive fixed points. That is, H has multiple fixed points when G N “decreases”
at low population sizes while it “increases” at high population values.

Proof Let L(N ) = G N (I1 N ) − N , a continuous function of N . Then L
′
(N ) =

f
′
(N ) + γ1(1 − I1) + γ2 I1 − 1, and L

′
(0) = f

′
(0) + γ1(1 − I1) + γ2 I1 − 1 >

f
′
(0) + γ2 − 1. Thus, RD2 > 1 implies L

′
(0) > 0. Since L(0) = 0 and L(N0) < 0,

L has a positive zero, denoted by N∗
0 , between 0 and N0. Recall that FN (I1 N ) = I1 N .

Therefore, H(N∗
0 , I1 N∗

0 ) = (N∗
0 , I1 N∗

0 ).

By Lemma (8), there are no population explosions under H iterations, and there
is an N > N1where L(N ) < 0. Hence, by continuity there is an N∗

1 > N1 where
L(N∗

1 ) = 0. Again, H(N∗
1 , I1 N∗

1 ) = (N∗
1 , I1 N∗

1 ) and we have our two positive fixed
points. 
�

Corollary 15 Let limN→∞ f (N )+γ1 N
N < 1. If RD1 < 1 and there is 0 < N0 with

G N0(I1 N0) > N0, then the origin is not a global attractor and H has at least two
positive fixed points.

Proof As in the proof of Theorem (14), let L(N ) = G N (I1 N ) − N , a continuous
function of N . L

′
(0) = f

′
(0) + γ1(1 − I1) + γ2 I1 − 1 < f

′
(0) + γ1 − 1. Thus,

RD1 < 1 implies L
′
(0) < 0. Since L(0) = 0 and L(N0) > 0, there is an N1 < N0

with L(N1) < 0. By continuity, L(N ) has a positive zero, denoted by N∗
0 , between

N1 and N0. Hence, H(N∗
0 , I1 N∗

0 ) = (N∗
0 , I1 N∗

0 ).

The second fixed point is produced just as in the proof of the last theorem. 
�

When the recruitment function is the Beverton–Holt model, then G N is a monotone
function. In this case, our SIS epidemic model exhibits at most one positive fixed
point. Next, we use a “simple” modified Beverton–Holt model to illustrate multiple
positive fixed points (two coexisting positive attracting fixed points) in a specific SIS
epidemic model with disease-induced mortality. To destroy the monotonicity in the
classic Beverton–Holt model, we use a step function to force a peak in the modified
model (see Fig. 3). In fisheries models, the step function could be a harvesting term.
The harvesting term is proportional to the population size at small population levels.
However, it is constant at high population levels.

Example 16 Consider Model (3) with the modified Beverton–Holt recruitment
function

f (N ) = aN

1 + bN
− P

Q
N (1 − step(N − Q)) − Pstep(N − Q),
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Fig. 3 Modified Beverton–Holt map with parameters as in Example (16)

where

step(N − Q) =
{

0 if N − Q < 0,

1 if N − Q ≥ 0,

φ

(
α I

N

)
= e− α I

N ,

and

a = 4, b = 0.75, α = 5, γ1 = 0.9, γ2 = 0.8,

P = 2.18, Q = 1, and σ = 0.9.

In Example (16), the recruitment function has the basic structure of the Beverton–
Holt map except for a local maximum and minimum near zero (see Fig. 3). The
disease-free state has a globally attracting positive fixed point at S∞ = 29.2.

Since limN→∞ f (N ) is a real number, limN→∞ f (N )+γ1 N
N = γ1 < 1. With our

choice of parameters, RD2 = 9.1 > 1 and I1 = 0.7586. Set N0 = 1.02 and N1 = 10.
Then G N0(I1 N0) = 0.972 < N0 and G N1(I1 N1) = 10.767 > N1. By Theorem (14),
Example (16) has at least two positive fixed points.

Figure 4 shows that Example (16) exhibits two coexisting (multiple) positive attrac-
tors, a “black” and “blue” positive attracting fixed points at (0.93, 0.71) and (15.53,
11.78) respectively, coexisting with a “red” disease-free fixed point at (29.2, 0) that
is globally attracting in the disease-free state.
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Fig. 4 The initial condition (3, 2) converges to (15.53, 11,78), the initial condition (0.01, 0.01) converges
to (0.93, 0.71) and the initial conditions (10, 0) converges to (29.2, 0). All the parameters are exactly as in
Example (16)

Fig. 5 Basin of attraction of (15.53, 11.78) and basin of attraction of (0.93, 0.71), where all parameters
are exactly as in Fig. 4

In Fig. 5, we illustrate the basins of attraction for the two coexisting positive fixed
points in Fig. 4, where the “red” and “blue” regions are respectively subsets of the
basins of attraction of the positive fixed points (0.93, 0.71) and (15.53, 11.78).

In Example (16), the origin is a repellor. Next, we demonstrate a situation where
the origin is an attractor (Corollary 15). Set P = 0.0395 and Q = 0.01 and keep all
the other parameters in Example (16) fixed at their current values. With our choice of
parameters, RD1 = 0.5 < 1 and I1 = 0.7586. Set N0 = 1.00. Then G N0(I1 N0) =
3.07 > N0. By Corollary (15), the origin is not a global attractor and the system has
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Fig. 6 The initial condition (10, 5) converges to (28.76, 21.82), the initial condition (0.01, 0.01) converges
to (0, 0) and the initial conditions (10, 0) converges to (51.59, 0). All the parameters are exactly as in
Example (16), except P = 0.0395 and Q = 0.01

Fig. 7 This is a zoom around the origin of Fig. 6. The initial condition (0.01, 0.01) converges to (0, 0)

at least two positive fixed points. Figures 6 and 7 show that the origin, “black”, attracts
an open subset of the interior, while coexisting with an attracting positive “blue” fixed
point. Figure 8 shows the basin of attraction for the origin.

Our examples have highlighted some of the multiple attractors generated by our
model when the disease-free dynamics are compensatory and the susceptible popula-
tion (in the absence of the disease) are on a globally attracting fixed point. In these
examples, the basins of the coexisting attractors are relatively simple and there is no
evidence of sensitive dependence of the long-term disease dynamics on the initial
population sizes. In the next section, we demonstrate multiple attractors with basin
structures that show evidence of sensitive dependence on initial population sizes.

6 Complex disease dynamics

When the recruitment function is the Beverton–Holt model, our SIS epidemic dynam-
ics are compensatory (equilibrium dynamics). However, when the recruitment function

123



Mortality in epidemic models

Fig. 8 Basin of attraction of the origin where all parameters are exactly as in Fig. 6

is a one-hump map, our SIS dynamics are overcompensatory (oscillatory dynamics)
such as periodic attractors and discrete Hopf (Neimark–Sacker) bifurcations. Our
examples exhibit all these complex structures while the disease-free dynamics is a
relatively simple globally attracting fixed point (compensatory dynamics). We use the
Ricker map in the following example to highlight these phenomena.

Example 17 Consider Model (3) with the Ricker recruitment function

f (N ) = N exp(r − N )

and

φ

(
α I

N

)
= e− α I

N ,

where

α = 5, γ1 = 0.9, γ2 ∈ (0, 0.9), r = 4 and σ = 0.9.

With our choice of parameters, in the absence of the disease, the susceptible pop-
ulation is on a globally attracting positive fixed point at

S∞ = r − ln(1 − γ1) = 6.303.
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Fig. 9 Bifurcation diagram of Example (17) where γ2 is varied between 0 and 0.3

Fig. 10 The initial condition (20, 18) converges to the fixed point (4.78, 2.37), the initial conditions (6.4,
1.4) converges to the three component limit cycle and the initial condition (0.1, 0) converges to (6.30, 0).
All the parameters are exactly as in Example (17), except γ2 = 0.176

In Fig. 9, we use the two initial population sizes, (6, 1) and (5.2, 3.6), to generate
a bifurcation diagram, where γ2 is varied between 0 and 0.3. At very low values of
γ2, Fig. 9 shows that Example (17) has a complex discrete Hopf (Neimark–Sacker)
cycle attractor, while at high values of γ2, it exhibits a stable fixed point attractor. For
intermediate values of γ2, the system has either a single stable fixed point attractor
or a fixed point attractor coexisting with either a three component complex Neimark–
Sacker cycle attractor or a period 3 attractor.

Figure 10 shows that at γ2 = 0.176, Example (17) has an attracting positive
“blue” fixed point at (4.78, 2.37) coexisting with a three component complex “black”
Neimark–Sacker cycle attractor. The basins of attraction of these multiple attractors
have fractal structures that illustrate sensitive dependence on initial conditions (see
Fig. 11).

Example (17) and Figs. 9, 10, and 11 have demonstrated some of the complex,
non-intuitive interactions between the recruitment function, disease induced mortality
and disease dynamics.
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Fig. 11 On the horizontal region, 0 ≤ S ≤ 10. On the vertical axis, 0 ≤ I ≤ 5. The initial condition in the
(S, I )-plane is approaching the attracting fixed point. The three circles are the three component attracting
Neimark–Sacker cycle. The large region is the basin of attraction of the cycle and the other region is that
of the fixed point. All parameters are exactly as in Fig. 10

7 Geometric growth

When we assume that the birth or recruitment processes are governed by the geometric
recruitment function

f (N ) = µN ,

then, in the absence of the disease, the susceptible (disease-free state) equation becomes

S(t + 1) = µS(t) + γ1S(t) = (µ + γ1)S(t).

The solution of this equation is

S(t) = (µ + γ1)
t S(0),

and

RD1 = µ

1 − γ1
.

If RD1 < 1, the population goes extinct at a geometric rate and if RD1 > 1, the
population explodes at a geometric rate. Under geometric recruitment function, R0 <

1 implies the extinction of the infective population while RD2 > 1 and R0 > 1 implies
its persistence (Theorem 9).
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Next, we use proportions to gain more understanding of our epidemic model under
geometric growth rate. That is, we let

i = I

N

and

s = S

N
.

Consequently, i denotes the fraction of the population that is infected and s denotes
the fraction that is susceptible. Since i (t) + s (t) = 1, our SIS model reduces to the
single equation,

i(t + 1) = γ1 (1 − φ (αi(t))) (1 − i(t)) + γ2σ i(t)

µ + γ1 + (γ2 − γ1)i(t)
= F1(i(t))

µ + γ1 + (γ2 − γ1)i(t)
.

(8)

The ability to reduce the geometric growth model to a single equation relies on the
assumption of the frequency-dependent transmission.

The set of iterates of

h (i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i

is equivalent to the set of density sequence generated by Model (8). Equation (8), the
one-dimensional i-equation is not capable of exhibiting two-dimensional bifurcations
such as the discrete Hopf (Neimark–Sacker) bifurcations of Example (17).

Let

R0 = −γ1αφ′(0)

(1 − γ1)(RD1 − 1) + 1 − γ2σ
.

If RD1 =1, then the demography has no impact on R0 and R0 = −γ1αφ′(0)
1−γ2σ

as in Eq. (6).

However, if RD1 �= 1 then the demography impacts R0 and 1
(1−γ1)(RD1 −1)+1−γ2σ

gives the demographic death-adjusted infectious period measured in generations.
Consequently, R0 decreases with increasing values of RD1 .

Next, we obtain that independent of initial population sizes R0 ≤ 1 implies that
the proportion of the infected eventually decreases to zero.

Theorem 18 If R0 ≤ 1, then limt→∞ i(t) = 0. That is, the proportion of the infected
population decreases to {0}.
Proof Recall that

h (i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i
.
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Since φ(0) = 1, φ′(i) ≤ 0 and φ′′(i) ≥ 0,

0 ≤ 1 − φ (αi) ≤ −αφ′ (0) i.

Hence,

h (i) ≤ γ1
(−αφ′ (0)

)
(1 − i) + γ2σ

µ + γ1 + (γ2 − γ1)i
i.

Let

M(i) = γ1
(−αφ′ (0)

)
(1 − i) + γ2σ

µ + γ1 + (γ2 − γ1)i
.

We will show that M(i) < 1 for all i > 0. This will force {i (t)}t≥0 to be a
decreasing sequence which converges to 0.

M(0) = −γ1αφ′ (0) + γ2σ

µ + γ1

and

M(1) = γ2σ

µ + γ2
< 1.

Since R0 ≤ 1,

−γ1αφ′(0)

(1 − γ1)(RD1 − 1) + 1 − γ2σ
≤ 1 ⇐⇒

−γ1αφ′(0)

µ − 1 + γ1 + 1 − γ2σ
≤ 1 ⇐⇒

−γ1αφ′ (0) + γ2σ

µ + γ1
≤ 1 ⇐⇒

M(0) ≤ 1.

We next show that M(i) is monotone on [0, 1].

M ′(i) = γ1αφ′(0)(µ + γ2) − γ2σ(γ2 − γ1)

(µ + γ1 + (γ2 − γ1)i)2 .

Since the numerator is a constant and the denominator is positive, M ′(i) does not
change signs. Hence, M is monotone and takes on values between M(0)= −γ1αφ′(0)+γ2σ

µ+γ1

and M(1) = γ2σ
µ+γ2

. That is, the maximum value of M on [0, 1] is less than or equal
to 1. Since M(1) < 1, M(i) < 1 for all i > 0. Consequently, h (i) < i whenever
i > 0. Therefore, the sequence {i (t)}t≥0 decreases to zero as t → ∞. 
�
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Now, we obtain that R0 > 1 implies the persistence of the proportion of infected
population. This result is independent of whether RD2 is bigger than 1 or less than 1.

Theorem 19 If R0 > 1, then {0} is an unstable fixed point of Model (8) and the
proportion of infected population is uniformly persistent.

Proof

h (i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i

and

h′ (0) = −αγ1φ
′ (0) + γ2σ

µ + γ1
.

Thus,

R0 > 1

is equivalent to

−γ1αφ′(0)

(1 − γ1)(RD1 − 1) + 1 − γ2σ
> 1

and

−αγ1φ
′ (0) + γ2σ

µ + γ1
> 1.

Therefore, there is a repelling neighborhood to the right of the unstable fixed point
{0}, (0, ζ1). The continuous function h (i) is positive on the compact interval [ζ1, 1]
and must obtain its positive minimum ζ2. Let

ζ = min{ζ1, ζ2} > 0.

Then

lim
t→∞

i(t) ≥ ζ

whenever i (0) > 0 and the proportion of infected population is uniformly persistent.

�

By Corollary (15) and Example (16), our epidemic model is capable of supporting
multiple positive equilibrium points. However, under geometric growth, our (propor-
tions) model has a globally attracting positive fixed point. To establish this, we need
the following auxiliary results.
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Lemma 20 Model (8) has either no critical points or a closed interval of critical
points.

The proof of Lemma 20 is in the Appendix.

Remark 21 If φ′ ≤ 0, then Model (8) has at most one critical point.

Remark 22 If Model (8) has a closed non-single point interval of critical points, then
h is a non-decreasing function.

Theorem 23 If R0 > 1 and φ′′′ is non-positive, then Model (8) has a unique positive
equilibrium.

Proof The fixed point for our system is the solution of the equation

h (i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i
= i.

Finding the fixed points is equivalent to finding where the two functions

F1(i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

and

P(i) = (µ + γ1 + (γ2 − γ1)i) i

intersect. F1(0) = P(0) = 0 and F1(1) = γ2σ < µ+γ2 = P(1). P(i) is a quadratic
function with constant negative second derivative 2(γ2 − γ1).

F ′
1(i) = −γ1 (1 − φ (αi)) − αγ1φ

′ (αi) (1 − i) + γ2σ.

F ′′
1 (i) = 2αγ1φ

′ (αi) − α2γ1φ
′′ (αi) (1 − i).

F ′′′
1 (i) = 3α2γ1φ

′′ (αi) − α3γ1φ
′′′ (αi) (1 − i).

Since φ′ ≤ 0, φ′′ ≥ 0 and φ′′′ ≤ 0, we have F ′′
1 ≤ 0 and F ′′′

1 ≥ 0 on [0, 1].
F ′

1(0) = −αγ1φ
′ (0) + γ2σ and P ′(0) = µ + γ1. Since

R0 > 1

is equivalent to

−αγ1φ
′ (0) + γ2σ

µ + γ1
> 1.

That is,

R0 > 1
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is equivalent to

F ′
1(0) > P ′(0).

Thus, there must be at least one more intersection which must be positive. Let i∞ be
the smallest positive point of intersection. Since F1(i) > P(i) on (0, i∞), F ′

1(i∞) ≤
P ′(i∞). However, there exists a point ic ∈ (0, i∞) where F ′

1(ic) < P ′(ic). If F ′
1(i∞) =

P ′(i∞), then F ′
1 has decreased less than P ′ on (ic, i∞). Hence, F ′′

1 > P ′′ at some
point in (ic, i∞). Since F ′′′

1 ≥ 0 and P ′′′ = 0, once F ′′
1 > P ′′ is true it must stay true.

Thus F ′′
1 > P ′′ would be true on (i∞, 1]. So with F ′

1(i∞) = P ′(i∞), we have F1 > P
on (i∞, 1] which contradicts F1(1) < P(1). Thus,

F ′
1(i∞) < P ′(i∞). (9)

Suppose there is a second point of intersection, i2∞. Since F1(i) < P(i) on
(i∞, i2∞), we have F ′

1(i2∞) ≥ P ′(i2∞). Thus, F ′
1 has decreased less than P ′ on

(i∞, i2∞). Hence, F ′′
1 > P ′′ at some point in (i∞, i2∞). Since F ′′′

1 ≥ 0 and P ′′′ = 0,

once F ′′
1 > P ′′ is true it must stay true. Thus, F ′′

1 > P ′′ would be true on (i2∞, 1].
So with F ′

1(i∞) ≥ P ′(i∞), we have F1 > P on (i2∞, 1] which contradicts F1(1) <

P(1). Therefore, there can be no second point of intersection and Model (8) has a
unique positive equilibrium. 
�
Lemma 24 Let the linear rational function

L (i) = ai + b

ci + d
,

where a, b, c and d are constants. Then

1. The composition map L(L(i)) is a linear rational function.
2. If L has a point of prime period 2, then L has a self inverse.
3. If

L[0, 1] ⊂ (0, 1]

is a decreasing rational function, then L(L(i)) > i for every i ∈ [0, i∞).

The proof of Lemma (24) is in the Appendix.
Now, we state a definition of envelopes on compact intervals that is similar to the

one used by Cull [12].

Definition 25 Let

F : [0, 1] → [0, 1]

have a unique critical point, ic, and a unique positive fixed point, i∞, where 0 < ic <

i∞ < 1. Also, let {0} be an unstable fixed point of F . A function

E : [0, 1] → [0, 1]
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envelopes the function F if and only if

E(i) ≥ F(i) on [0, i∞] and

E(i) ≤ F(i) on [i∞, 1].

A slight modification to a corollary of Theorem 1 of Cull in [12] gives the following
result.

Theorem 26 If E envelopes F on [0, 1] and E(E(i)) > i for all i ∈ [ic, i∞), then
i∞ is a globally asymptotically stable positive fixed point of F on (0, 1].

The proof of Theorem (26) is omitted. Next, we use Theorem (26) to show that
in stark contrast to the epidemic model under either the modified Beverton–Holt or
the Ricker recruitment functions, the model under geometric growth does not exhibit
multiple attractors.

Theorem 27 If R0 > 1 and φ′′′ is non-positive, then Model (8) has a unique positive
globally asymptotically stable equilibrium. That is, independent of positive initial pop-
ulation sizes, the proportion of the infected population approaches a unique positive
equilibrium point.

Proof By Theorem (23), Model (8),

h (i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i
,

has a unique positive fixed point, i∞. By Theorem (19), {0} is an unstable fixed point
of h. If h is a non-decreasing function, then i < h (i) ≤ i∞ for all i ∈ (0, i∞) and
i∞ ≤ h (i) < i for all i ∈ (i∞, 1]. Thus, every positive initial condition generates a
monotone sequence that converges to the positive unique fixed point, i∞. Hence, i∞
is globally asymptotically stable in (0, 1].

Next, we consider the case when h is not a non-decreasing function. That is, h has
critical points. By Lemma (20) and Remark (22), h has a unique critical point, ic. If
i∞ ≤ ic, then i < h (i) ≤ i∞ for all i ∈ (0, i∞). Consequently, every point in (0, i∞)

converges monotonically to i∞. Furthermore, h (i) < i for all i ∈ (i∞, 1]. Thus, every
positive initial condition either generates a monotone sequence that converges to the
positive unique fixed point or an iterate of the point gets mapped below i∞ and then
monotonically increases to i∞. Hence, i∞ is globally asymptotically stable in (0, 1].

Now, we consider the situation when i∞ > ic. Let

h∞ (i) = γ1 (1 − φ (αi∞)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i
.

Notice that h∞ (i) is a linear rational function with vertical asymptote larger than 1.
Also, 0 ≤ h∞ (0) = γ1(1−φ(αi∞))

µ+γ1
< 1 and 0 < h∞ (1) = γ2σ

µ+γ2
< 1. Thus,

h∞ ([0, 1]) ⊂ [0, 1]. Since φ is a non-increasing function, h∞ (i) ≥ h (i) when-
ever i ∈ [0, i∞] and h∞ (i) ≤ h (i) whenever i ∈ [i∞, 1]. By Definition (25), h∞
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envelopes h on [0, 1]. Notice that h∞ (ic) ≥ h (ic) > h (i∞) = h∞ (i∞). Hence, h∞
is a decreasing function on [0, 1] and h∞ ([0, 1]) ⊂ (0, 1].

Using Lemma (24) and the decreasing nature of h∞ we obtain that h∞(h∞(i)) > i
for all i ∈ (0, i∞). Now, apply Theorem (26), to obtain that i∞ is globally asymptoti-
cally stable in (0, 1]. 
�

8 Conclusion

We analyzed a discrete-time deterministic SIS epidemic model in a dynamic popula-
tion. Our model allowed the population dynamics and disease transmission to be fairly
general. Within this framework, we highlighted the role of disease-induced mortality,
and the complexity of the interaction between infectives and susceptibles in discrete-
time models.

Our results show that disease-induced death can force the extinction of the pop-
ulation with R0 > 1, where the population persists without disease-induced death.
In [6,7], Berezovsky et al. used a continuous-time SI model with disease-induced
mortality to show that for some initial population sizes, a tiny number of infectious
individuals can drive an otherwise persistent population to extinction. We obtain a
similar result for arbitrary initial population sizes. Furthermore, our model illustrates
that disease-induced mortality can generate multiple stable equilibria whereas the cor-
responding model without disease-induced mortality has only one stable equilibrium
point [4,14].

The emergence of fractal basin boundaries and the associated sensitive dependence
on initial population sizes in simple deterministic epidemic models indicate the need
for further investigations in our deterministic model and corresponding stochastic
models, both theoretical and experimental, on the impact of disease-induced mortality
on the persistence and control of infectious disease dynamics. Are our results on
extinction and persistence different in corresponding stochastic SIS epidemic models?
The important assumptions of our model are: discrete-time; deterministic dynamics of
both the host population and the spread of the disease; the disease increases mortality
but does not affect fecundity; no vertical transmission or acquired immunity; and
frequency-dependent transmission. What are the consequences of these assumptions
on corresponding stochastic models?

In the absence of disease-induced mortality, Castillo-Chavez and Yakubu obtained
that disease-free dynamics drives the disease dynamics in deterministic SIS epidemic
models [9–11]. That is, when the dynamics of the susceptible population in the absence
of the disease are cyclic and non-chaotic, then the disease dynamics are cyclic and
non-chaotic. Similarly, when the dynamics of the susceptible population in the absence
of the disease are chaotic, then the disease dynamics are chaotic. In the current paper,
we show that when the recruitment function is not the geometric growth rate then it
is possible for the infective population to exhibit multiple attractors with complicated
basin structures while the susceptible population in the absence of the disease are on
a globally attracting fixed point (compensatory disease-free dynamics [27]). That is,
in epidemic models with disease-induced mortality the disease-free dynamics do not
drive the disease dynamics.
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Appendix

Proof of Lemma 1 Since γ2 < γ1,

f (N (t)) + γ2 N (t) = f (N (t)) + γ2(S(t) + I (t)) ≤ f (N (t)) + γ1S(t) + γ2 I (t)

= N (t + 1) ≤ f (N (t)) + γ1(S(t) + I (t)) = f (N (t)) + γ1 N (t).


�
Proof of Lemma 2 (a) Since

FN (I ) = γ1

(
1 − φ

(
α

I

N

))
(N − I ) + γ2σ I,

FN (I ) = γ1

(
1 − φ

(
α

I

N

))
(N − I ) + γ2σ I

≤ γ1(N − I ) + γ2 I ≤ N max{γ1, γ2} ≤ N .

Since

G N (I ) = f (N ) + γ1(N − I ) + γ2 I

G N (I ) − FN (I ) = f (N ) + γ1φ

(
α

I

N

)
(N − I ) + γ2(1 − σ)I ≥ 0.

Hence,

FN (I ) ≤ min{N , G N (I )}.
It is easy to check that the equality holds if and only if (N , I ) = (0, 0).

(b)

F ′
N (I ) = −αγ1

N
φ′

(
α

I

N

)
(N − I ) − γ1

(
1 − φ

(
α

I

N

))
+ γ2σ.

F ′
N (0) = −αγ1

N
φ′ (0) (N − 0) − γ1 (1 − φ (0)) + γ2σ

= −αγ1φ
′ (0) + γ2σ.

F ′
N (N ) = −αγ1

N
φ′

(
α

N

N

)
(N − N ) − γ1

(
1 − φ

(
α

N

N

))
+ γ2σ

= −γ1 (1 − φ (α)) + γ2σ > −γ1 > −1.

(c)

F ′′
N (I ) = −

( α

N

)2
γ1φ

′′
(

α
I

N

)
(N − I ) + 2

αγ1

N
φ′

(
α

I

N

)
.
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Since φ′ ≤ 0 and φ′′ ≥ 0 on [0,∞), we have

F ′′
N (I ) ≤ 0 on [0, N ].

(d) FN (0) = 0 implies that y = F ′
N (0)I is the tangent line to the graph of FN (I ) at

0. Since FN is concave down on [0, N ], its graph is below the tangent line at the
origin on [0, N ]. Hence,

FN (I ) ≤ F ′
N (0)I on [0, N ].

(e) FN (N ) = γ2σ N < N . Since F ′
N (0) > 1, the graph of FN (I ) starts out higher

than the diagonal and must cross it before I = N . The concavity property of
FN (I ) (see (c)) implies that there is a unique positive fixed point.

(f) Let �N (I ) = I
N .

F1(I ) = γ1 (1 − φ (α I )) (1 − I ) + γ2σ I. Thus,

F1(�N (I )) = γ1

(
1 − φ

(
α

I

N

)) (
1 − I

N

)
+ γ2σ

I

N

= 1

N
FN (I ) = �N (FN (I )).

(g) Since

F ′
N0

(0) = (−αγ1φ
′ (0) + γ2σ

)
> 1,

IN0 exists with FN0(IN0) = IN0 . Thus,

�N0

(
FN0(IN0)

) = �N0

(
IN0

) = F1
(
�N0

(
IN0

))
.

That is. �N0

(
IN0

) = I1, the unique positive fixed point of F1 and IN0 = N0 I1.

Similarly, IN1 = N1 I1. Hence, N0 < N1 implies IN0 < IN1 . In general, the fixed
point for FN is N I1.

(h) Topological conjugacy preserves critical points. The result follows from ( f ).

(i) Let N0 < N1 and I ∈ (0, N0].The topological conjugacy in Part ( f ) shows that

FN0(I ) = N0 F1

(
I

N0

)

and

FN1(I ) = N1 F1

(
I

N1

)
.

Note that I
N1

< I
N0

. Since the graph of F1 goes through the origin with positive

slope and is concave down, the ray through the origin and
(

I
N1

, F1

(
I

N1

))
has a
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larger slope than the ray through the origin and
(

I
N0

, F1

(
I

N0

))
. The first ray con-

tains the point
(

I, N1 F1

(
I

N1

))
, while the second ray contains

(
I, N0 F1

(
I

N0

))
.

Hence, FN1(I ) = N1 F1

(
I

N1

)
< N0 F1

(
I

N0

)
= FN0(I ). 
�

Proof of Lemma 3 (a) I (t +1) = γ1

(
1 − φ

(
α

I (t)
N (t)

))
(N (t)− I (t))+γ2σ I (t). By

Lemma (2a), N (t)− I (t) ≥ 0 ∀t ∈ Z+. Therefore, γ1

(
1 − φ

(
α

I (t)
N (t)

))
(N (t)−

I (t)) ≥ 0. I (0) > 0 implies γ2σ I (0) > 0 and hence, I (1) > 0. By induction,
I (t) > 0 and γ2σ I (t) > 0. Hence, I (t + 1) > 0.

(b) Use N (t + 1) = f (N (t))+ γ1(N (t)− I (t))+ γ2 I (t) and proceed as in part (a).

�

Proof of Lemma 6 RD1 > 1 implies {0} is a repelling fixed point. Since γ1S is an
increasing function, the persistence of the susceptible population governed by Eq. (4)
is immediate.

Since γ2 < γ1 implies 0 ≤ RD2 < RD1 . RD2 < 1 whenever RD1 < 1. Hence, {0}
is a locally asymptotically stable fixed point of the functions D1(N ) = f (N ) + γ1 N
and D2(N ) = f (N )+ γ2 N whenever RD1 < 1. By Lemma (1), small positive initial
values of N lead to the extinction of the total population. N = S + I implies the
extinction of the susceptible and infected populations at positive small initial values
of S and I . 
�
Proof of Lemma 7 First, we consider the case f (0) > 0. Since limN→∞ f (N ) +
γ2 N = ∞, D2(N ) = f (N ) + γ2 N has a positive minimum on [0,∞). Lemma (1)
gives D2(N ) ≤ H1(N , I ). Thus, Ht

1(N , I ) is larger than this positive minimum for
every t > 0 and the total population is uniformly persistent.

Now, we consider the case f (0) = 0 and RD2 > 1. In this case, f ′(0) > 1 − γ2
and there is a κ > 0 such that N ∈ (0, κ) implies that

N < D2(N ) ≤ H1(N , I ).

If N > κ
γ2

, then κ < D2(N ) ≤ H1(N , I ). Let

Aκ =
{
(N , I )|0 ≤ I ≤ N , κ ≤ N ≤ κ

γ2

}
.

H1 is positive on the compact set Aκ , and it has a minimumκ > 0 on Aκ . Consequently,

lim
t→∞

Ht
1(N , I ) ≥ min{κ, κ} = η > 0

and the total population is uniformly persistent. 
�
Proof of Lemma 8 Let

δ = lim
N→∞

f (N ) + γ1 N

N
< 1.
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There is an N > 0 such that N ≥ N implies

f (N ) + γ1 N

N
= D1(N )

N
< δ + 1 − δ

2
= 1 + δ

2
< 1.

Lemma (1) gives H1(N , I ) ≤ D1(N ). Thus, if N ≥ N , then H1(N , I ) < 1+δ
2 N . Let

BN = {(N , I )|0 ≤ I ≤ N ≤ N }.

H1 is continuous on the compact set BN , and hence has a maximum η > 0 on BN .
As a result, the region

W = {(N , I )|0 ≤ I ≤ N ≤ max{N , η}},

a compact subset of {(N , I )|0 ≤ I ≤ N }, attracts all initial conditions under H
iterations. Hence, all orbits are bounded. 
�
Proof of Lemma 20 Recall that

h (i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i

µ + γ1 + (γ2 − γ1)i
,

and

h′ (i) = H(i)

(µ + γ1 + (γ2 − γ1)i)2 ,

where

F1(i) = γ1 (1 − φ (αi)) (1 − i) + γ2σ i,

and

H(i) = F ′
1(i) (µ + γ1 + (γ2 − γ1)i) − (γ2 − γ1)F1(i).

Then

H ′(i) = F ′′
1 (i) (µ + γ1 + (γ2 − γ1)i)

= 2αγ1 (µ + γ1 + (γ2 − γ1)i) φ′ (αi)

−α2γ1(1 − i) (µ + γ1 + (γ2 − γ1)i) φ′′ (αi) .

Next, we show that H ′ is a non-positive function. Recall that φ′ ≤ 0 and φ′′ ≥ 0.

Notice that 2αγ1 (µ + γ1 + (γ2 − γ1)i) ≥ 2αγ1 (µ + γ2) > 0 on [0, 1]. Hence, the
first term of H ′ is a non-positive function. Since, α2γ1(1−i) (µ + γ1 + (γ2 − γ1)i) ≥
0 on [0, 1], we have that both terms of H ′ are non-positive functions. Therefore, H ′
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is a non-positive function. If H ′(i) = 0, let i∗c be the first critical point of H . Then
φ′ (αi∗c

) = 0. Since φ′ ≤ 0 and φ′′ ≥ 0, φ′ (αi) = 0 for all i ≥ i∗c . Hence, H is a
constant on [i∗c , 1].

If H(1) > 0, then H(i) > 0 for all i ∈ [0, 1]. In this case, h is an increasing
function with no critical points.

If H(1) < 0, then H has a unique zero, ic. So h
′
has ic as a unique zero, the unique

critical point of h.
Now, we consider the last case, H(1) = 0. In this case, h′ is positive on [0, i∗c )

and zero on [i∗c , 1]. Thus, h is increasing on [0, i∗c ) and constant on [i∗c , 1]. Its set of
critical points is the closed interval [ic, 1] = [i∗c , 1]. 
�

Proof of Lemma 24 The proofs of (1) and (2) are straightforward and are omitted.
Now, we prove (3).

Since L is decreasing and L([0, 1]) ⊂ (0, 1], L has a unique fixed point i∞ ∈
(0, 1] and the vertical asymptote of L is outside of [0, 1]. Hence, i < i∞ ≤ L(i) and
L2(i) ≤ i∞ for all i ∈ [0, i∞). The zeroes of the continuous function L2(i)− i are the
period 2 points of L . L2(0) > 0. That is, L2(i) − i > 0 when i = 0. Hence, {0} is not
a point of period 2. By part (2), L has no points of prime period 2. Hence, L2(i) − i
has no zeroes in [0, i∞). Thus, L2(i) − i > 0 for all i ∈ [0, i∞).
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