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Abstract

In discrete-time age-structured population models, a periodic environment is not always d
ous. We show that it is possible to have the average of the age class populations over an a
cycle (in a periodic environment) not less than the average of the carrying capacities (in a corre
ing constant environment). In our age-structured model, a periodic environment does not in
the average total biomass (no resonance). However, a periodic environment is disadvantag
a population whenever there is no synchrony between the number of age classes and the p
the environment. As in periodically forced models without age-structure, we show that period
forced age-structured population models support multiple attractors with complicated structu
 2005 Elsevier Inc. All rights reserved.

1. Introduction

Temporal environmental fluctuations are common in nature and their causes are
fold. Periodic fluctuations, for example, are caused by annual or daily fluctuations
physical environment [7,8]. Theoretical and experimental studies have focused on w
or not a population is adversely affected by a periodic environment relative to a co
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environment. The controlled laboratory experiment of Jillson with a periodic food su
resulted in oscillations in population size of the flour beetle (Tribolium). In the alternating
habitat, the total population numbers observed were more than twice those in th
stant habitat even though the average flour volume was the same in both enviro
[6,8,16,21–26,45]. Henson and Cushing [25], Costantino et al. [6] and Henson et a
24] explained Jillson’s observations. In [6,16,21–26], mathematical analysis and la
tory experiments were used to demonstrate that it is possible for a periodic enviro
to be advantageous for a population. Others have used either the logistic differen
difference equations (without age-structure) to show that a periodic environment is d
rious [4,5,8,37–39,41,48]. That is, the average of the resulting oscillations in the pe
environment is less than the average of the carrying capacity in a corresponding c
environment. Cushing and Henson obtained similar results for 2-periodic monotone
els without age structure [8]. Kon [29,30], Kocic [27,28], Elaydi and Sacker [9–15]
since extended these results to includep-periodic Beverton–Holt population models wit
out age-structure, wherep > 2.

In this paper, we focus on the effects of periodic environments on age-structure
ulations. We replace the lumped one-population model in [3,8,11–15,27,29–31], w
p-periodically forced, age-structured, discrete-time population model of the form

x → Ax,

wherex is a population vector whose componentxi is the population in age classi, A is a
Leslie matrix with a periodically forced density dependent fecundity element, andp > 1.
Our density dependent assumption is motivated by the fact that in most fishery m
density effects occur within the first year of life [34,46]. Henson used perturbation
contour methods to study the effects of periodic environments on two age class Lesl
fisheries models that are subject to 2-periodic forcing [22,34].

We use a mathematical theorem to show that a population governed by ann-age class
Leslie model can be adversely affected by ap-periodic environment (attenuant cycle
This result is a generalization of that of Cushing and Henson [8], Kon [29,30], Kocic
Elaydi and Sacker [11–14] to include population models with age structure. Further
we illustrate that a periodic environment is not always deleterious for such popula
In our age-structured model, a periodic environment does not increase the averag
biomass (no resonance).

Section 2 reviews periodically forced single species closed population models w
age-structure. The periodic Beverton–Holt and Ricker models are examples of the g
model. In Section 3, we introduce the main model, a periodically forced Leslie mode
density dependent fecundity element. Such periodically forced discrete dynamical s
generate cyclic or chaotic oscillations. We introduce, in Section 3, a precise mathem
definition of attenuantcycles. The average densities of attenuant cycles are less tha
average of the carrying capacity in a constant environment. Framework for the sup
nonattenuant and attenuant cycles is discussed in Sections 4 and 5, respectively. S
is on the structure of attractors in periodic environments, and the implications of our r
are discussed in Section 7.
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2. Periodic single species population models without age structure

Nonautonomous single species ecological models (without age structure) of the g
form

x(t + 1) = x(t)g
(
t, x(t)

)
(1)

have been used to study the long-term dynamics of discretely reproducing populat
periodically varying environments, wherex(t) is the population size at generationt [17,
18,32,35,36,42,47,49]. TheC1 mapg :Z+ ×[0,∞) → (0,∞) is the per capita growth rat
where there exists asmallest positive integerp satisfyingg(t + p,x) = g(t, x). That is,
g is periodic with periodp.

To understand the long-term dynamics of Model (1), we introduce the following
quence of autonomous models:

G0(x) = xg(0, x),

G1(x) = xg(1, x),

...

Gp−1(x) = xg(p − 1, x).

Notice that

G0
(
x(0)

) = x(1),G1
(
x(1)

) = x(2), . . . ,Gp−1
(
x(p − 1)

) = x(p),

whenever the set of sequence of population densities{x(0), x(1), . . .} are generated b
Model (1). EachGi is an autonomous model that describes the population dynamic
single species in a constant environment. The set of iterates of thep-periodic dynamica
system,{G0,G1, . . . ,Gp−1}, is equivalent to the set of density sequences generate
Model (1). In many ecological models, theGi have globally attracting fixed points calle
thecarrying capacities. An interesting problem is to find a relationship between the l
term dynamics of thep-periodic dynamical system, Model (1), and the average of
carrying capacities of theGi .

Definition 1. A periodic orbit of Model (1) is attenuant (resonant) if its average valu
less (greater) than the average of the carrying capacities of theGi .

The nonautonomous Beverton–Holt model,

x(t + 1) = µKtx(t)

Kt + (µ − 1)x(t)
, (2)

and the nonautonomous Ricker model,

x(t + 1) = x(t)er(1−x(t)/Kt ), (3)

are examples of Model (1), whereKt+p = Kt . The coefficientsr > 0 andµ > 1 are the
inherent growth rates of the species, and the positive periodic carrying capacityKt is a
characteristic of the fluctuating habitat or environment.
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In the classical (autonomous) Beverton–Holt and Ricker modelsKt is a constant (that is
Kt ≡ K). The equilibrium population sizes of both models are 0 andK . In the Beverton–
Holt model every positive initial population size converges to the unique positive eq
rium pointx∞ = K (carrying capacity) [8,19,20]. The Ricker model has similar long t
equilibrium dynamics wheneverr < 2. If r > 2, the positive equilibrium point become
unstable and the Ricker model has either cyclic or chaotic long term dynamics [37–4

Periodically forced population models have been used to study the impact of te
ral environmental fluctuations on populations. Are populations adversely affected
periodic environment (relative to a constant environment of the same average carry
pacity)? Coleman [4], Coleman and Frauenthal [5], May [39], Nisbet and Gurney [41]
logistic differential equation models to show that periodic carrying capacities are de
ous. Cushing [8] and Rosenblat [43] have since shown that this result is model depe
In more recent papers Cushing and Henson [8], Elaydi and Sacker [11–14], Kocic [2
Kon [28,29] used difference equation models without age structure to show that pe
carrying capacities are deleterious.

3. Age structured, periodic population models

To study the effects of age structure and periodic fluctuations on species surviv
persistence, we introduce the periodically forced Leslie matrix population model with
sity dependent fecundity functions. The model is of the form

x1(t + 1) =
s∑

i=1

xi(t)gi

(
t, xi(t)

)
,

x2(t + 1) = λ1x1(t),

...

xs(t + 1) = λs−1xs−1(t), (4)

where for eachi ∈ {1,2, . . . , s}, xi(t) is the population size of theith age class at timet
andλi ∈ (0,1) is theith age class constant survival probability per generation. TheC1 map
gi :Z+ × [0,∞) → [0,∞) is the fecundity of theith age class and there exists a smal
positive integerp satisfying

gi(t + p,xi) = gi(t, xi)

for eachi. We assume that the environment is periodic (p > 1). In this model all age
classes may reproduce. An age class,i, is fertile if gi(t, xi) > 0 at some point(t, xi) ∈
Z+ ×[0,∞). We assume that a fertile age class remains fertile at all points, that isgi :Z+ ×
[0,∞) → (0,∞).

A rescaling of the age classes can be performed to effectively replace theλi with 1
giving thep-periodic Leslie model

x1(t + 1) =
s∑

xi(t)gi

(
t, xi(t)

)
,

i=1
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x2(t + 1) = x1(t),

...

xs(t + 1) = xs−1(t). (5)

The Levin–Goodyear age-structured fisheries model [34], studied by Henson [22]
example of Model (5) withp = 2 ands = 2.

When only the age class with the largest fertility (classL) actually reproduces
Model (5) takes on the following form:

x1(t + 1) = xL(t)g
(
t, xL(t)

)
,

x2(t + 1) = x1(t),

...

xs(t + 1) = xs−1(t). (6)

That isgi = 0 for i �= L in Model (5) andg = gL. Since the dynamics of Model (6) a
determined by the firstL age classes, we assumeL = s throughout this paper.

To prevent population explosion, we assume that limx→∞ xg(t, x) exists. In Model (6)
the contribution to the first age class of generationt +1 by thesth age class isf (t, xs(t)) =
xs(t)g(t, xs(t)). Note thatf (t + p, ·) = f (t, ·). Whenevergs(t,0) > 1 for all t , we say
that the contribution to the next generation from the oldest age class is apioneerfunction
[16–18]. Whenf (t, xi(t)) = µKtxi (t)

Kt+(µ−1)xi (t)
(Beverton–Holt), thenf is a bounded pionee

function.
When the environment is constant, Model (6) reduces to

x1(t + 1) = xs(t)g
(
xs(t)

)
,

x2(t + 1) = x1(t),

...

xs(t + 1) = xs−1(t). (7)

In Model (7) the contribution to the first age class of generationt + 1 by thesth age class
is f (xs(t)) = xs(t)g(xs(t)).

An equilibrium of Model (7) has all age class population sizes the same. This com
value of a globally attracting equilibrium vector of the age structured nonperiodic m
is called thecarrying capacity. Model (7) is a discrete time autonomous dynamical sys
from R

s+ to R
s+, which we denote byF .

For eachJ ∈ {0,1, . . . , p − 1} defineFJ :Rs+ → R
s+ by

FJ(x1, x2, . . . , xs) = (
xs(t)gs

(
J, xs(t)

)
, x1, x2, . . . , xs−1

)
.

The nonautonomousp-periodic age-structured model with density dependent fecun
element, Model (6), can be viewed as the compositions of thesep autonomous dynamica
systems. One interesting problem is to find a relationship between the carrying cap
globally attracting fixed points, of theFJ and the long term dynamics of thep-periodic
Model (6). Note that a cycle for thep-periodic age-structured model produces cycle
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each age class. The values that each age class goes through are the same but s
time. Thus, for each age class the averages of the age class populations over a cycl
same.

Definition 2. A k-cycle of Model (6) is attenuant (resonant) when each average o
age class populations over thek-cycle is less (greater) than the average of the carr
capacities of theFJ .

This generalizes the Cushing–Henson definition of attenuant cycles to include p
tion models with age structure [8].

In this paper, we use Model (6) to derive conditions under which there exists a glo
attracting cycle, and we compare the average age-class densities of the cycle (p
environment) with the average of the carrying capacities (constant environment). T
we use a simple Leslie model with density dependent periodic fecundity function to
that a periodic environment does not produce resonant cycles.

Whenp = 1, the environment is constant andF = F0. The discrete dynamical sy
tem,F , has several invariant subsets. We use the following notation to describe so
them. Let

A = {
x ∈ R

s+: at least one component ofx is an equilibrium off (x) = xg(x)
}
,

Bi = {
x ∈ R

s+: xj = xi whenj � i andxj = f (xi) whenj < i
}
,

and

B =
s⋃

i=1

Bi.

Lemma 3. A andB areF invariant sets.

Proof. Let x ∈ A = {x ∈ R
s+: at least one component ofx is an equilibrium off (x) =

xg(x)} and theith component,xi , be an equilibrium off . If i < s, thenFi+1(x) = xi .
SoF(x) ∈ A. If i = s, thenF1(x) = f (xs) = xs . Hence, in all cases,F(x) ∈ A andA is
invariant underF .

Let x ∈ B. Then there is ani ∈ {1,2, . . . , s} such thatx ∈ Bi . If i < s, thenF(x) ∈ Bi+1.
However, ifi = s, thenF(x) has all coordinates equal tof (xs) andF(x) ∈ B1. ThusB is
invariant underF . �

4. Nonattenuant and nonresonant cycles

A periodic environment is not always deleterious for a population. That is, it is pos
to have the average of the age class populations over an attracting cycle (in a p
environment) equal to the average of the carrying capacities (in corresponding co
environments). In this section, we show that if the number of age classes,s, is a multiple of
the period of the environment,p, then the average of the resulting population oscillatio
Model (6) is equal to the average of the carrying capacities (nonattenuant and nonre
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cycle). We also prove that the stable age class distribution in Model (6) is a cycle tha
period which dividesp, whenever eachGi has a globally attracting equilibrium populatio
size and the number of age classes is a multiple of the period of the environment.

Theorem 4. If for eachi ∈ {0,1, . . . , p − 1}, Gi has an attracting fixed point with basin
attractionBi ands is a multiple ofp, then Model(6) has an attractingk-cycle with basin
of attraction containingB(s−1) mod p × B(s−2) mod p × · · · × B0 wherek dividesp.

Proof. For eachi ∈ {0,1, . . . , p − 1} let xi be the attracting fixed point forGi with basin
of attractionBi . Sinces = mp for some positive integerm, we can take the initial age cla
sizes to be

(
x1(0), x2(0), . . . , xs(0)

)

= (xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x0).

This is (xp−1, xp−2, . . . , x0) repeatedm times. In one time step the population sizes
come

(
x1(1), x2(1), . . . , xs(1)

) = (
xs(0)g

(
0, xs(0)

)
, x1(0), x2(0), . . . , xp−1(0)

)

= (
x0g(0, x0), xp−1, xp−2, . . . , x1

)
.

But sincex0 is a fixed point ofG0, we havex0g(0, x0) = x0 and
(
x1(1), x2(1), . . . , xs(1)

)

= (x0, xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x1).

After another time step the age class sizes are
(
x1(2), x2(2), . . . , xs(2)

)

= (
x1g(1, x1), x0, xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1,

xp−2, . . . , x2)

= (x1, x0, xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x2),

sincex1g(1, x1) = G1(x1) = x1. After p times steps the age classes sizes have return

(xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x0).

Thus,

(xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x0)

is a choice of initial age class sizes that gets repeated afterp time steps. Since Model (6
is periodic of periodp, this choice of initial age class sizes will continue to repeat evep

time steps. Hence,

(xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x0)

is a choice of initial age class sizes that gives a periodic orbit. The period of this orb
usually bep. But it is possible that it would repeat beforep iterations. If it produces a
cycle of periodk andk < p, thenk must dividep.
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To see that the periodic orbit starting at

(xp−1, xp−2, . . . , x0, xp−1, xp−2, . . . , x0, . . . , xp−1, xp−2, . . . , x0)

is attracting, note that the 2nd iteration of Model (6) is

x1(t + 2) = xs−1(t)g
(
t + 1, xs−1(t)

)
,

x2(t + 2) = xs(t)g
(
t, xs(t)

)
,

x3(t + 2) = x1(t),

...

xs(t + 2) = xs−2(t),

and thesth iteration is

x1(t + s) = x1(t)g
(
t + s − 1, x1(t)

)
,

x2(t + s) = x2(t)g
(
t + s − 2, x2(t)

)
,

...

xs−1(t + s) = xs−1(t)g
(
t + 1, xs−1(t)

)
,

xs(t + s) = xs(t)g
(
t, xs(t)

)
.

Now fixing t = 0, we get

x1(s) = x1(0)g
(
s − 1, x1(0)

)
,

x2(s) = x2(0)g
(
s − 2, x2(0)

)
,

...

xs−1(s) = xs−1(0)g
(
1, xs−1(0)

)
,

xs(s) = xs(0)g
(
0, xs(0)

)
.

Sinces = mp andg(t +p,x) = g(t, x), thesth iteration of each age classi is given by the
autonomous dynamical systemG(s−i) mod p. That is,xi(ns + s) = G(s−i) mod p(xi(ns))

for n ∈ Z+. Sincex(s−i) mod p is an attracting fixed point ofG(s−i) mod p with basin
B(s−i) mod p, limn→∞ xi(ns) = x(s−i) mod p wheneverxi(0) ∈ B(s−i) mod p and

lim
n→∞

(
x1(ns), x2(ns), . . . , xs(ns)

) = (x(s−1) mod p, x(s−2) mod p, . . . , x0).

The continuity of Model (6) together with the periodicity of the orbit of

(x(s−1) mod p, x(s−2) mod p, . . . , x0),

prove that the orbit of

(x(s−1) mod p, x(s−2) mod p, . . . , x0)

is an attracting cycle of periodk with basin of attraction containing

B(s−1) mod p × B(s−2) mod p × · · · × B0,

wherek dividesp. �



J.E. Franke, A.-A. Yakubu / J. Math. Anal. Appl. 316 (2006) 69–86 77

t

fact

t

t

ts of

odels

n

-
ber
The following corollary follows from Theorem 4 when eachBi = (0,∞).

Corollary 5. If for each i ∈ {0,1, . . . , p − 1}, Gi has a globally attracting fixed poin
on (0,∞) and s is a multiple ofp, then Model(6) has a globally attractingk-cycle on
(0,∞) × (0,∞) × · · · × (0,∞) wherek dividesp.

Corollary 6. If x is a globally attracting fixed point forG(x) = xg(x) on (0,∞), then
(x, x, . . . , x) is a globally attracting fixed equilibrium point of Model(7) on (0,∞) ×
(0,∞) × · · · × (0,∞).

The proof follows by noting that the proof of Theorem 4 did not make use of the
thatp was the smallest positive integer satisfyingg(t + p,x) = g(t, x).

Corollary 7. If for each i ∈ {0,1, . . . , p − 1}, Gi has a globally attracting fixed poin
on (0,∞) and s is a multiple ofp, then the global attractingk-cycle of Model(6) on
(0,∞) × (0,∞) × · · · × (0,∞) is nonattenuant and nonresonant.

Proof. From the proof of Theorem 4, each point in the attractingk-cycle consists of a
permutation of the globally attracting fixed points of theGj repeatedm times. Each poin
on thek-cycle is a cyclic permutation of the others, and the average of thisk-cycle is a
vector with all coordinates equal to the average of the globally attracting fixed poin
the Gj , which is also the average of carrying capacities of theGj . Hence, this globally
attractingk-cycle fails to be either attenuant or resonant.�

To demonstrate Theorem 4 and Corollary 7 in the Beverton–Holt and Ricker m
with age-structure we consider the following example.

Example 8. When the fertility function

g(t, x) = µKt

Kt + (µ − 1)x

andKt is periodic with periodp, the Beverton–Holt mapsGj have carrying capacityKj

and theKj are also their global attracting fixed points. However, if the fertility functio

g(t, x) = er(1−x/Kt )

with 0< r < 2 andKt is periodic with periodp, the Ricker mapsGj have carrying capac
ity Kj and theKj are also their global attracting fixed points. In either case, if the num
of age classes equals the period ofKt , then the orbit of

(Ks−1,Ks−2, . . . ,K0)

is a globally attracting, nonattenuant, nonresonantk-cycle wherek dividesp.
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5. Attenuant cycles

A periodic environment is disadvantageous for a population whenever there is n
chrony between the number of age classes and the period of the environment. To ill
this, we give conditions for our age structured Model (6) to have a globally stable atte
cycle. Others have used either continuous-time (logistic differential equation) or dis
time (Beverton–Holt) single species population modelswithoutage-structure to show tha
it is possible for a periodic environment to be disadvantageous for a population [8,1
22,26,28,29].

Model (2) with nonconstant carrying capacities has a globally attracting positive a
ant cycle. To generalize this result to include age structured models, we make the fol
assumption in Model (6):

(A): EveryL-periodic dynamical system formed from a subset of

{G0,G1, . . . ,Gp−1}
and consisting of at least two of theGj has a globally attracting positive attenua
cycle.

In Model (2),

Gj(x) = µKjx

Kj + (µ − 1)x
.

Picking a subset of the{G0,G1, . . . ,Gp−1} is equivalent to picking the correspon
ing subset of{K0,K1, . . . ,Kp−1}. This subset generates a new Model (2) and he
must have a globally attracting positive attenuant cycle. Thus, everyL-periodic subset o
{G0,G1, . . . ,Gp−1} consisting of at least two of theGj has a globally attracting positiv
attenuant cycle (assumption(A)).

Theorem 9. If Model (6) satisfies assumption(A) and s is not a multiple ofp, then the
model has a globally attracting positive attenuant cycle.

Proof. Let
(
x1(0), x2(0), . . . , xs(0)

) = (x1, x2, . . . , xs)

be a fixed set of initial age class population densities. LetGk = Gk mod p. The fixed initial
condition is mapped to(G0(xs), x1, x2, . . . , xs−1) by Model (6). The next image is

(
G1(xs−1),G0(xs), x1, x2, . . . , xs−2

)
.

After s iterations the image is
(
Gs−1(x1),Gs−2(x2), . . . ,G1(xs−1),G0(xs)

)
.

The image afters + 1 iterations is
(
Gs

(
G0(xs)

)
,Gs−1(x1),Gs−2(x2), . . . ,G1(xs−1)

)
.
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After 2s iterations the image is
(
G2s−1

(
Gs−1(x1)

)
,G2s−2

(
Gs−2(x2)

)
, . . . ,Gs+1

(
G1(xs−1)

)
,Gs

(
G0(xs)

))
.

After 3s iterations the image is
(
G3s−1

(
G2s−1

(
Gs−1(x1)

))
,G3s−2

(
G2s−2

(
Gs−2(x2)

))
, . . . ,

G2s+1
(
Gs+1

(
G1(xs−1)

))
,G2s

(
Gs

(
G0(xs)

)))
.

After ps iterations the image is
(
Gps−1

(· · · (G3s−1
(
G2s−1

(
Gs−1(x1)

))) · · ·),
Gps−2

(· · · (G3s−2
(
G2s−2

(
Gs−2(x2)

))) · · ·), . . . ,
Gps−s+1

(· · · (G2s+1
(
Gs+1

(
G1(xs−1)

))) · · ·),
Gps−s

(· · · (G2s

(
Gs

(
G0(xs)

))) · · ·)).
Observe that theith image ofxj under the composition map

Gps−j ◦ · · · ◦ G3s−j ◦ G2s−j ◦ Gs−j

is the population density of thej th age class afterips generations. Sinces is not a multiple
of p, the composition

Gps−j ◦ · · · ◦ G3s−j ◦ G2s−j ◦ Gs−j

is made up of at least two differentGk . Therefore, by assumption(A), the periodic dynam
ical system generated by

{Gs−j ,G2s−j ,G3s−j , . . . ,Gps−j }
has a globally attracting positive attenuant cycle. We denote the first point on thisr-cycle
by yj . By a theorem of Elaydi and Sacker [11–15], there is a positive integerm such that
mr = p.

Next, we show that(y1, y2, . . . , ys) is the first point on a globally attracting positiv
attenuant cycle for Model (6). Since eachyj is the first point on a globally attracting cyc
whose period dividesp, afterps iterations Model (6) maps(y1, y2, . . . , ys) to itself. That
is, (y1, y2, . . . , ys) is the initial point on a cycle for Model (6).

Now, we show that the cycle is globally attracting. Usingps iterations of Model (6)
and the global attracting nature of eachyj , we see that any initial condition lim
its on (y1, y2, . . . , ys). The continuity of Model (6) implies that the cycle starting
(y1, y2, . . . , ys) is globally attracting. To see that this orbit is attenuant, we conside
orbit of the first age class. We break the firstps iterates of the orbit into groups th
ares iterations apart. These groups consist of the firstp iterations ofyj under the peri-
odic dynamical system{Gs−j ,G2s−j ,G3s−j , . . . ,Gps−j }. Since the cycle starting atyi

using the periodic dynamical system{Gs−j ,G2s−j ,G3s−j , . . . ,Gps−j } is attenuant, the
average of the corresponding group is less than the average of the carrying capac
{Gs−j ,G2s−j ,G3s−j , . . . ,Gps−j }. Since the average of the averages is less than the
age of larger averages, the average of the firstps iterates ofy1 is less than the average
the carrying capacities of{G0,G1,G2, . . . ,Gps−1}. Each of theGk appear in this list the
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same number of times, the average of the carrying capacities of{G0,G1,G2, . . . ,Gps−1}
equals the average of the carrying capacities of{G0,G1,G2, . . . ,Gp−1}. So the first age
class satisfies the inequality of an attenuant cycle. Each of the other age classes hav
which are time shifts of that for the first age class. Thus each age class satisfies the i
ity of an attenuant cycle and hence the globally attracting positive cycle is attenuant�

To apply Theorem 9, we consider Model (6) with 2 age classes in a period 3
ronment. Since every periodic dynamical system formed from a subset of{G0,G1,G2}
has a globally attracting positive attenuant cycle, lety1 be the first point on this cy
cle for the periodic dynamical system{G1,G0,G2}. Let G1(y1) = y2 andG0(y2) = y3.
Now G2(y3) = y1 sincey1 has period 3 for this periodic dynamical system. The
tial population sizes(y1, y2) are mapped to(G0(y2), y1) = (y3, y1). The next image is
(G1(y1), y3) = (y2, y3). The third image is(G2(y3), y2) = (y1, y2). Thus (y1, y2) has
period 3 a divisor ofps = 6 for Model (6). Note that both age classes cycle through
mutations of the attenuant cycle{y1, y2, y3} and hence(y1, y2) starts an attenuant cycle fo
the model. Next, we demonstrate this with a Beverton–Holt example.

Example 10. In Model (6) let the fertility function

g(t, x) = µKt

Kt + (µ − 1)x
,

whereKt = Kt+3 and the number of age classess = 2. Then the corresponding carryin
capacities of the Beverton–Holt modelsG0,G1 andG2 areK0,K1 andK2, respectively.
The fixed point ofG2 ◦ G0 ◦ G1 is

y1 = (µ2 + µ + 1)K0K1K2

K0K2 + µK1K2 + µ2K0K1
.

Now

y2 = G1(y1) = (µ2 + µ + 1)K0K1K2

K1K2 + µK0K1 + µ2K0K2

and

y3 = G0(y2) = G0
(
G1(y1)

) = (µ2 + µ + 1)K0K1K2

K0K1 + µK0K2 + µ2K1K2
.

The initial condition(y1, y2) is the starting point for a globally attracting positive attenu
3-cycle (Theorem 9).

6. Multiple overlapping chaotic attractors

In constant environments, single species discrete-time population models witho
structure and without the allee effect, like the Beverton–Holt and Ricker models, d
have multiple (coexisting) attractors [19,20,33]. However, in periodic environment
Ricker model without age structure and without the allee effect admit multiple cyclic (
interval) or chaotic (interval) attractors [16–18]. In this section, we discuss the implica
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of these attractors on periodic age structured models. Periodicity is not the only mech
for generating multiple attractors. In constant environments, single species discre
population models with age structure and without the allee effect can have multiple
isting) attractors [47].

An open setU is a trapping regionfor a continuous dynamical systemF :X → X if
F(U) ⊂ U whereX is a locally compact metric space andU is a compact subset ofX.
A trapping region forF , U , generates the nonempty compact attractorΛ = ⋂∞

i=0 F i(U).

Lemma 11. LetF andG be continuous dynamical systems onX. If U is a trapping region
for bothF andG, thenU is a trapping region for bothG ◦ F andF ◦ G.

Proof. SinceF(U) ⊂ U andG(U) ⊂ U , G ◦ F(U) ⊂ U andF ◦ G(U) ⊂ U . ThusU is a
trapping region for bothG ◦ F andF ◦ G. �

By Lemma 11, when any two dynamical systems have the same trapping regioU ,
then the systems and their compositions have attractors inU .

We will use the following perturbation result of Franke and Selgrade [16].

Lemma 12. LetF be a continuous dynamical system onX. If U is a trapping region forF ,
then there is a neighborhoodV of F in the function space of continuous maps onX such
thatG ∈ V implies thatU is a trapping region forG.

Now we make a connection between trapping regions for the one-dimensional m
f (xs) = xsg(xs), and trapping regions for the autonomouss-dimensional age class mode
System (7).

Theorem 13. If U ⊂ R+is a trapping region forf (xs) = xsg(xs) with attractorΛ, then
the positivelyF -invariant set,U × U × · · · × U ⊂ R

s+, is a trapping region forF s

with attractorΛ × Λ × · · · × Λ ⊂ R
s+, whereF :Rs+ → R

s+ is System(7). Furthermore,
Λ × Λ × · · · × Λ is an attractor forF .

Proof. SinceU is a trapping region forf , f (U) ⊂ U .

F1(U × U × · · · × U ) = f (U ) ⊂ U.

For i ∈ {2,3, . . . , s}, Fi(U ×U ×· · ·×U) = U . ThusU ×U ×· · ·×U is F invariant. For
eachi ∈ {1,2, . . . , s},

F s
i (U × U × · · · × U ) = f (U ) ⊂ U.

Hence,U × U × · · · × U is a trapping region forF s . Now

F s(U × U × · · · × U ) = f (U ) × f (U ) × · · · × f (U )

so
∞⋂

i=0

F is(U × U × · · · × U ) =
∞⋂

i=0

f i(U ) × f i(U ) × · · · × f i(U )

= Λ × Λ × · · · × Λ.
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Sincef (U) is a compact subset of the open setU and disjoint from the complement o
U in R+, α = inf{|p − q|: p ∈ f (U) andq ∈ R+\U} > 0. For eachi ∈ {1,2, . . . , s} let
Ui = {q ∈ R+: |p − q| < α/i for somep ∈ f (U)}. Then eachUi is open and

f (U) ⊂ Us ⊂ Us ⊂ Us−1 ⊂ Us−1 ⊂ Us−2 ⊂ · · · ⊂ U2 ⊂ U1 ⊂ U.

Thus,f (U1) ⊂ f (U) ⊂ U1 and eachUi is a compact subset ofU .

F(Us × Us−1 × · · · × U1 )

= f (U1) × Us × Us−1 × · · · × U2 ⊂ Us × Us−1 × · · · × U1.

HenceUs ×Us−1×· · ·×U1 is a trapping region forF with attractorΛ×Λ×· · ·×Λ. �
To demonstrate Theorem 13 with a specific model, we consider System (7) wit

age classes and classic Ricker growth function.

Example 14. In System (7) lets = 2 andg(x) = er(1−x/K) wherer andK are positive.

Whenr = 2.1 andK = 1, f (x) = xer(1−x/K) has a 2-cycle attractor,Λ, with trapping
region,U , consisting of two open intervals.Λ × Λ is a 4 point attractor for Example 1
with trapping region consisting of four rectangles. As shown in [47],Λ × Λ is a 4-cycle
periodic attractor.

Whenr = 2.8 andK = 1, f (x) = xer(1−x/K) has a chaotic attractor with positive Ly
punov exponent,Λ, consisting of two closed intervals. Its trapping region,U , consists of
two open intervals.Λ × Λ, a chaotic attractor with positive Lyapunov exponents for
ample 14, consists of four closed rectangles. The trapping region consists of fou
rectangles. The four rectangles inΛ × Λ “effectively rotate” 90◦ underF so that the diag
onal pairs are invariant underF 2. HenceF 2 has two coexisting chaotic attractors.

Figure 1 shows the four chaotic rectangles. This figure also shows that each
invariant sets,A andB, given in Lemma 3 contain four piece chaotic subsets (blue lines
black curves). These sets are attractors forF restricted toA andB, respectively. A trapping
region for the chaotic attractor inA is {1} × U ∪ U × {1} and a trapping region for th
chaotic attractor inB is {(x, x) ∈ R

2+: x ∈ U} ∪ {(f (x), x) ∈ R
2+: x ∈ U}.

The next example can be viewed as making Example 14 periodic with period 2.

Fig. 1. 4-piece chaotic attractor together with two invariant sets (A, blue, and B, black).
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Example 15. In System (6) lets = 2 andg(t, x) = er(1−x/(K+c(−1)t )) wherer, c andK are
positive.

Whenr = 2.1,K = 1, andc is a small positive number, the periodic Ricker model w
out age structure,f (t, x) = xer(1−x/(K+c(−1)t )), has two 2-cycle attractors as predict
by the perturbation theorem of Henson [21,22]. Each of these 2-cycle attractors p
a 4-cycle attractor for the corresponding 2-periodic age structured Ricker model, E
ple 15, as seen in Fig. 2 wherec = 0.1.

Franke and Selgrade studied attractors in periodic dynamical systems [16]. In
framework, an attractor for the 2-periodic dynamical system{F0,F1} consists of an at
tractor for the composition mapF1 ◦ F0 together with the image of this attractor und
F0. Whenc = 0, it is easy to see thatF1 = F0 = F andF1 ◦ F0 = F 2 (Example 15).
In addition, whenr = 2.8 andK = 1, the two chaotic attractors ofF 2 are pairs of diago
nal rectangles that are mapped onto each other underF iteration. Lemma 12 implies tha
whenc is small, the trapping regions forF 2 are also trapping regions forF1 ◦ F0. Thus,
F1 ◦ F0 has two attractors which are “close” to the attractors ofF 2. The images of thes
attractors underF0, however, do not need to be each other. In this case,{F0,F1} has two
distinct attractors. Figure 3 shows two overlapping attractors with positive Lyapuno

Fig. 2. Two coexisting period 4 attractors.

Fig. 3. A 4-piece chaotic attractor (black) coexisting with another 4-piece chaotic attractor (red) and t
attractors overlap.
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ponents (black and red) whenc = 0.1. A point starting in one of the black major diagon
rectangles stays in the black rectangles for all time, while a point starting in one of th
minor diagonal rectangles stays in the red rectangles for all time.

7. Conclusion

This paper focuses on an old ecological question. Are species adversely affec
a periodic environment relative to a constant environment of the same average
ing capacity? Henson used a “contour method” to study the effect of periodicity i
Levin–Goodyear Leslie-type 2-age class fisheries model with 2-periodic forcing. We
p-periodically forced,n-age class, discrete time population model to study the effec
periodic fluctuations and age-structure on populations (p > 1).

Results of Coleman [4], Coleman and Frauenthal [5], Nisbet and Gurney [41]
Rosenblat [43] on the continuous-time logistic equation (without age-structure) im
that a periodic carrying capacity is deleterious. Cushing [8] and Rosenblat [43] have
shown that this assertion is model dependent.

In a recent paper, Cushing showed that a periodic environment is always deleteri
populations modeled by a class of monotone difference equations without age-str
Our results support this assertion whenever there is no synchrony between the num
age classes and the period of the environment. In addition, in contrast to Cushing’s
for monotone equations and the periodic Beverton–Holt model (without age structur
show that a periodic environment is not always deleterious for age-structured popu
models. We also show that a periodic environment does not generate resonant cycle
age-structured population model.

Periodically forced population models with or without age-structure are capable o
erating multiple attractors with complicated structures [2,16,21,23,47–49]. Studies
structures of the coexisting attractors and their basin boundaries would be welcom
The use of periodicity as a mechanism to increase the number of attractors combine
age-structure may increase the likelihood of species survival in periodically varying
ronments.
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