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Abstract

In discrete-time age-structured population models, a periodic environment is not always deleteri-
ous. We show that it is possible to have the average of the age class populations over an attracting
cycle (in a periodic environment) not less than the average of the carrying capacities (in a correspond-
ing constant environment). In our age-structured model, a periodic environment does not increase
the average total biomass (no resonance). However, a periodic environment is disadvantageous for
a population whenever there is no synchrony between the number of age classes and the period of
the environment. As in periodically forced models without age-structure, we show that periodically
forced age-structured population models support multiple attractors with complicated structures.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

Temporal environmental fluctuations are common in nature and their causes are mani-
fold. Periodic fluctuations, for example, are caused by annual or daily fluctuations in the
physical environment [7,8]. Theoretical and experimental studies have focused on whether
or not a population is adversely affected by a periodic environment relative to a constant
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environment. The controlled laboratory experiment of Jillson with a periodic food supply
resulted in oscillations in population size of the flour be€Tighplium). In the alternating
habitat, the total population numbers observed were more than twice those in the con-
stant habitat even though the average flour volume was the same in both environments
[6,8,16,21-26,45]. Henson and Cushing [25], Costantino et al. [6] and Henson et al. [23,
24] explained Jillson’s observations. In [6,16,21-26], mathematical analysis and labora-
tory experiments were used to demonstrate that it is possible for a periodic environment
to be advantageous for a population. Others have used either the logistic differential or
difference equations (without age-structure) to show that a periodic environment is delete-
rious [4,5,8,37-39,41,48]. That is, the average of the resulting oscillations in the periodic
environment is less than the average of the carrying capacity in a corresponding constant
environment. Cushing and Henson obtained similar results for 2-periodic monotone mod-
els without age structure [8]. Kon [29,30], Kocic [27,28], Elaydi and Sacker [9-15] have
since extended these results to inclydperiodic Beverton—Holt population models with-
out age-structure, whepe> 2.

In this paper, we focus on the effects of periodic environments on age-structured pop-
ulations. We replace the lumped one-population model in [3,8,11-15,27,29-31], with a
p-periodically forced, age-structured, discrete-time population model of the form

x — Ax,

wherex is a population vector whose components the population in age clagsA is a

Leslie matrix with a periodically forced density dependent fecundity elementpand.

Our density dependent assumption is motivated by the fact that in most fishery models,
density effects occur within the first year of life [34,46]. Henson used perturbation along
contour methods to study the effects of periodic environments on two age class Leslie-type
fisheries models that are subject to 2-periodic forcing [22,34].

We use a mathematical theorem to show that a population governed/bage class
Leslie model can be adversely affected by-@eriodic environment (attenuant cycles).
This result is a generalization of that of Cushing and Henson [8], Kon [29,30], Kocic [27],
Elaydi and Sacker [11-14] to include population models with age structure. Furthermore,
we illustrate that a periodic environment is not always deleterious for such populations.
In our age-structured model, a periodic environment does not increase the average total
biomass (no resonance).

Section 2 reviews periodically forced single species closed population models without
age-structure. The periodic Beverton—Holt and Ricker models are examples of the general
model. In Section 3, we introduce the main model, a periodically forced Leslie model with
density dependent fecundity element. Such periodically forced discrete dynamical systems
generate cyclic or chaotic oscillations. We introduce, in Section 3, a precise mathematical
definition of attenuantcycles. The average densities of attenuant cycles are less than the
average of the carrying capacity in a constant environment. Framework for the support of
nonattenuant and attenuant cycles is discussed in Sections 4 and 5, respectively. Section 6
is on the structure of attractors in periodic environments, and the implications of our results
are discussed in Section 7.
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2. Periodic single species population modelswithout age structure

Nonautonomous single species ecological models (without age structure) of the general
form

x(t+1) =x(0)g(t, x(1)) 1)

have been used to study the long-term dynamics of discretely reproducing populations in
periodically varying environments, whexgr) is the population size at generatiofl7,
18,32,35,36,42,47,49]. The! mapg : Z,. x [0, o0) — (0, 00) is the per capita growth rate
where there exists smallest positive integep satisfyingg(t + p, x) = g(¢, x). That is,
g is periodic with periodp.

To understand the long-term dynamics of Model (1), we introduce the following se-
guence of autonomous models:

Go(x) = xg(0,x),
G1(x) = xg(1, x),

Gp_1(x)=xg(p—1,x).
Notice that

Go(x(0) = x(1), G1(x (1) =x(2). ... G p_1(x(p — 1) = x(p),

whenever the set of sequence of population densfti€8), x(1), ...} are generated by
Model (1). EachG; is an autonomous model that describes the population dynamics of a
single species in a constant environment. The set of iterates gf-fgegiodic dynamical
system,{Go, G1, ..., G,_1}, is equivalent to the set of density sequences generated by
Model (1). In many ecological models, tlig have globally attracting fixed points called
the carrying capacitiesAn interesting problem is to find a relationship between the long
term dynamics of thep-periodic dynamical system, Model (1), and the average of the
carrying capacities of the;.

Definition 1. A periodic orbit of Model (1) is attenuant (resonant) if its average value is
less (greater) than the average of the carrying capacities @f;the

The nonautonomous Beverton—Holt model,
wKx(t)

xt+l)=——"-—"—, 2
K+ (u—Dx(@) @)

and the nonautonomous Ricker model,
x(t + 1) = x(r)e" TFO/KD) 3)

are examples of Model (1), whe, |, = K;. The coefficients: > 0 andu > 1 are the
inherent growth rates of the species, and the positive periodic carrying capacisya
characteristic of the fluctuating habitat or environment.
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In the classical (autonomous) Beverton—Holt and Ricker makigls a constant (that is,
K, = K). The equilibrium population sizes of both models are 0 &ndn the Beverton—
Holt model every positive initial population size converges to the unique positive equilib-
rium pointx,, = K (carrying capacity) [8,19,20]. The Ricker model has similar long term
equilibrium dynamics whenever < 2. If r > 2, the positive equilibrium point becomes
unstable and the Ricker model has either cyclic or chaotic long term dynamics [37—-40,44].

Periodically forced population models have been used to study the impact of tempo-
ral environmental fluctuations on populations. Are populations adversely affected by a
periodic environment (relative to a constant environment of the same average carrying ca-
pacity)? Coleman [4], Coleman and Frauenthal [5], May [39], Nisbet and Gurney [41] used
logistic differential equation models to show that periodic carrying capacities are deleteri-
ous. Cushing [8] and Rosenblat [43] have since shown that this result is model dependent.
In more recent papers Cushing and Henson [8], Elaydi and Sacker [11-14], Kocic [27] and
Kon [28,29] used difference equation models without age structure to show that periodic
carrying capacities are deleterious.

3. Agestructured, periodic population models

To study the effects of age structure and periodic fluctuations on species survival and
persistence, we introduce the periodically forced Leslie matrix population model with den-
sity dependent fecundity functions. The model is of the form

X+ =) xi0g(t, x(1),
i=1
x2(t +1) = Ayxa (1),

Xt + 1) = Ag_1x,-1(2), (4)

where for eachi € {1, 2, ..., s}, x;(¢) is the population size of thih age class at time
and; € (0, 1) is theith age class constant survival probability per generation (Thmap

gi ' Z4+ x [0,00) — [0, 00) is the fecundity of théth age class and there exists a smallest
positive integep satisfying

g&i(t+p,x;)=gi(t,x;)

for eachi. We assume that the environment is periodicx{ 1). In this model all age
classes may reproduce. An age classs fertile if g;(¢z,x;) > 0 at some pointz, x;) €
Z+ x [0, 00). We assume that a fertile age class remains fertile at all points, thatds x
[0, o0) — (0, 00).

A rescaling of the age classes can be performed to effectively replace thih 1
giving the p-periodic Leslie model

X+ =) xing(tx 1),

i=1
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xo(t+1) =x1(0),

xs(t + 1) =x5-10). (5)

The Levin—Goodyear age-structured fisheries model [34], studied by Henson [22], is an
example of Model (5) withp = 2 ands = 2.

When only the age class with the largest fertility (clasys actually reproduces,
Model (5) takes on the following form:

x1(t+ 1) =x (gt xL (1)),
x2(t +1 =x1(0),

xs(t + 1) =x5-10). (6)

That isg; =0 fori # L in Model (5) andg = g, . Since the dynamics of Model (6) are
determined by the first age classes, we assure= s throughout this paper.

To prevent population explosion, we assume that lim, xg(z, x) exists. In Model (6)
the contribution to the first age class of generatieri by thesth age class ig (¢, x; (1)) =
xs(1)g(t, x5(t)). Note thatf(t + p,-) = f(z,-). Wheneverg,(r,0) > 1 for all r, we say
that the contribution to the next generation from the oldest age clagsaseerfunction
[16-18]. Whenf (7, xi (1)) = #% (Beverton—Holt), thery is a bounded pioneer
function.

When the environment is constant, Model (6) reduces to

x1(t+1) = xs(t)g(xs(l)),
x2(t+1) =x1(1),

xs(t +1) =x_1(2). (7)

In Model (7) the contribution to the first age class of generatignl by thesth age class
is FOs(®) = x5(1)g (x5 (2)).

An equilibrium of Model (7) has all age class population sizes the same. This common
value of a globally attracting equilibrium vector of the age structured nonperiodic model
is called thecarrying capacity Model (7) is a discrete time autonomous dynamical system
from R’ to R?_, which we denote by-.

Foreach/ €{0,1,..., p— 1} defineF J: R} — R’ by

FJ(x1,x2,...,x5) = (xs(t)gs (J, xs(t)), X1, X2, ..., xsfl).

The nonautonomoug-periodic age-structured model with density dependent fecundity
element, Model (6), can be viewed as the compositions of theagonomous dynamical
systems. One interesting problem is to find a relationship between the carrying capacities,
globally attracting fixed points, of th€J and the long term dynamics of theperiodic

Model (6). Note that a cycle for the-periodic age-structured model produces cycles in
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each age class. The values that each age class goes through are the same but shifted in
time. Thus, for each age class the averages of the age class populations over a cycle are the
same.

Definition 2. A k-cycle of Model (6) is attenuant (resonant) when each average of the
age class populations over thecycle is less (greater) than the average of the carrying
capacities of the& J.

This generalizes the Cushing—Henson definition of attenuant cycles to include popula-
tion models with age structure [8].

In this paper, we use Model (6) to derive conditions under which there exists a globally
attracting cycle, and we compare the average age-class densities of the cycle (periodic
environment) with the average of the carrying capacities (constant environment). That is,
we use a simple Leslie model with density dependent periodic fecundity function to show
that a periodic environment does not produce resonant cycles.

When p = 1, the environment is constant aiti= FO. The discrete dynamical sys-
tem, F, has several invariant subsets. We use the following notation to describe some of
them. Let

A= {x € R’ : at least one component ofis an equilibrium off (x) = xg(x)},
B; = {x eRy: x; =x; whenj >iandx; = f(x;) when; < i},

and
s
B= U B;.
i=1

Lemma3. A and B are F invariant sets.

Proof. Let x € A = {x € R.: atleast one component efis an equilibrium of f (x) =
xg(x)} and theith componenty;, be an equilibrium off. If i < s, then F;;1(x) = x;.
SoF(x) e A. If i = s, thenF1(x) = f(x;) = x5. Hence, in all cases(x) € A and A is
invariant underr’.

Letx € B. Thenthereisane {1,2,...,s} suchthat € B;. If i <s,thenF(x) € B;11.
However, ifi = s, thenF (x) has all coordinates equal #xx;) andF(x) € By. ThusB is
invariantunderr. 0O

4. Nonattenuant and nonresonant cycles

A periodic environment is not always deleterious for a population. That is, it is possible
to have the average of the age class populations over an attracting cycle (in a periodic
environment) equal to the average of the carrying capacities (in corresponding constant
environments). In this section, we show that if the number of age classes, multiple of
the period of the environmen, then the average of the resulting population oscillation in
Model (6) is equal to the average of the carrying capacities (honattenuant and nonresonant
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cycle). We also prove that the stable age class distribution in Model (6) is a cycle that has a
period which divideg, whenever eacly; has a globally attracting equilibrium population
size and the number of age classes is a multiple of the period of the environment.

Theorem 4. If for eachi € {0, 1, ..., p — 1}, G; has an attracting fixed point with basin of
attraction B; ands is a multiple ofp, then Model6) has an attractingc-cycle with basin
of attraction containingB(—1) mod p X B(s—2) mod p X --- X Bo wherek dividesp.

Proof. Foreach €{0,1,..., p — 1} letx; be the attracting fixed point fat; with basin
of attractionB;. Sinces = mp for some positive integen, we can take the initial age class
sizes to be
(xl(o)a XZ(O), L] xS(O))
=(Xp-1,Xp-2,..., X0, Xp—1,Xp—2, 2., X0, e+, Xp—1,Xp—2,...,X0).
Thisis (x,—1,Xp—2, ..., X0) repeatedn times. In one time step the population sizes be-
come
(xl(l)a x2(1), sy xs(l)) = (xS (O)S(Oa xS (0))7 xl(o)v x2(0)7 ceey xpfl(o))
= (¥0g(0,X0), Xp—1.Xp_2, ..., X1).
But sincexy is a fixed point ofGg, we havexog (0, xo) = xo and
(-xl(l)a x2(1), L] xs(l))
= (f()sfp—lvxp—z, e »XOsxp—lvxp—Zs "'1f0a e axp—l»fp—21 . "1-%1)'

After another time step the age class sizes are

(x1(2), x2(2), ..., xg (2))

= (xlg(lvxl)’x()vfp—lsfp—Zv "'7-¥O9fp—l’fp—27 "'7201 "'1-fp—1’
Xp-2,...,X2)
= (f].’fO’xp*l?fp*Z’ ""f07fpflaip72’""x07"'7fp71’fp727”'7f2)7

sincex1g(1, x1) = G1(x1) = x1. After p times steps the age classes sizes have returned to

(xp—lvxp—21"'1f07xp—1»fp—2’""iOv"'vxp—l,fp—Z’""xo)'

Thus,

(xp—lvxp—Zs"'sXOaxp—l»fp—21"'1-%07"'7-%[7—19-%]7—2’"'1-%0)

is a choice of initial age class sizes that gets repeated aftiene steps. Since Model (6)
is periodic of periodp, this choice of initial age class sizes will continue to repeat eyery
time steps. Hence,

()_Cp—L)_Cp—Z,-~~a)?0,3_cp—1»3_fp—23--~a)_50a~--,3_fp—1»)?p—2,---a)_CO)

is a choice of initial age class sizes that gives a periodic orbit. The period of this orbit will
usually bep. But it is possible that it would repeat befopeiterations. If it produces a
cycle of periodk andk < p, thenk must dividep.
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To see that the periodic orbit starting at
(Xp—1,Xp-2, .03 X0, Xp—1,Xp—2y .21 X052+, Xp—1,Xp—2,...,X0)
is attracting, note that the 2nd iteration of Model (6) is
x1(t +2) = x_1(0)g (1 + 1, x-1(1)),
x2(1 +2) = xs(1)g (1, x5 (1)),
x3(t + 2) = x1(1),

xs(t +2) = x5_2(1),

and thesth iteration is
x1(t+9) =x1(0)g(t +5s — 1L x1()),
x2(t +5) = x2(0)g(r + 5 — 2, x2(1)),

x5-1(t 4 5) =x5-1(0)g(r + L x,1(1)),
Xs(f+5) = xg (t)g(t, xs(t))-
Now fixing ¢t = 0, we get
x1(s) =x1(0)g(s — 1, x1(0)),
x2(s) = x2(0)g (s — 2, x2(0)),

xs-1(s) = x5-1(0)g (1, x,-1(0)),
xs(s) = x5(0)g (07 Xs (O))
Sinces =mp andg(t + p, x) = g(¢, x), thesth iteration of each age classs given by the
autonomous dynamical syste@ys_;) mod - That is,x; (ns 4+ s) = G(s—i) mod p(x; (15))
for n € Z,. SinceXx—iymodp IS @n attracting fixed point 06 _;) mod , With basin
B(s—iy mod p My 00 X; (n5) = X (s—i) mod p Whenevery; (0) € B(s—i) mod p and
nleoo(X1(nS), x2(ns), ..., X5 (n5)) = (X(s—1) mod p» X(s—2) mod p - - -» X0)-
The continuity of Model (6) together with the periodicity of the orbit of
(i(xfl) mOdpa x(éfz) mOdpa LR} 370)7
prove that the orbit of
(f(xfl) mod p» J_C(SfZ) mod ps -+ X0)
is an attracting cycle of periadwith basin of attraction containing
B(s—l) mod p X B(S—Z) modp X -+ X Bo,
wherek dividesp. O
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The following corollary follows from Theorem 4 when eaBh= (0, co).

Corollary 5. If for eachi € {0,1,..., p — 1}, G; has a globally attracting fixed point
on (0, c0) ands is a multiple of p, then Model(6) has a globally attractingk-cycle on
(0, >0) x (0, 00) x --- x (0, c0) wherek dividesp.

Corollary 6. If x is a globally attracting fixed point foG (x) = xg(x) on (0, c0), then
(x,x,...,x) is a globally attracting fixed equilibrium point of Modér) on (0, c0) x
(0,00) x --- x (0, ).

The proof follows by noting that the proof of Theorem 4 did not make use of the fact
that p was the smallest positive integer satisfyi@ + p, x) = g(z, x).

Corollary 7. If for eachi € {0,1,..., p — 1}, G; has a globally attracting fixed point
on (0,00) and s is a multiple of p, then the global attracting-cycle of Model(6) on
(0, 00) x (0, 0) x --- x (0, 00) is nonattenuant and nonresonant.

Proof. From the proof of Theorem 4, each point in the attractingycle consists of a
permutation of the globally attracting fixed points of ifi¢ repeatedn times. Each point

on thek-cycle is a cyclic permutation of the others, and the average ofthigle is a
vector with all coordinates equal to the average of the globally attracting fixed points of
the G ;, which is also the average of carrying capacities of@he Hence, this globally
attractingk-cycle fails to be either attenuant or resonartt

To demonstrate Theorem 4 and Corollary 7 in the Beverton—Holt and Ricker models
with age-structure we consider the following example.

Example 8. When the fertility function

uK;

TR -

andK; is periodic with periodp, the Beverton—-Holt map& ; have carrying capacity ;
and thek ; are also their global attracting fixed points. However, if the fertility function

g(t, x) = =/KD

with 0 < » < 2 andK; is periodic with periodp, the Ricker maps; ; have carrying capac-
ity K; and theK; are also their global attracting fixed points. In either case, if the number
of age classes equals the periodkgf then the orbit of

(Ks-1,Ks—2, ..., Ko)

is a globally attracting, nonattenuant, nonresoracycle wherek divides p.
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5. Attenuant cycles

A periodic environment is disadvantageous for a population whenever there is no syn-
chrony between the number of age classes and the period of the environment. To illustrate
this, we give conditions for our age structured Model (6) to have a globally stable attenuant
cycle. Others have used either continuous-time (logistic differential equation) or discrete-
time (Beverton—Holt) single species population moddgthoutage-structure to show that
it is possible for a periodic environment to be disadvantageous for a population [8,11-14,
22,26,28,29].

Model (2) with nonconstant carrying capacities has a globally attracting positive attenu-
ant cycle. To generalize this result to include age structured models, we make the following
assumption in Model (6):

(A): EveryL-periodic dynamical system formed from a subset of
{G05 Gl’ MR Gp*l}

and consisting of at least two of ti@®; has a globally attracting positive attenuant

cycle.
In Model (2),
. _ nKjx
G0 = Kj+(u—1x’

Picking a subset of th¢Go, G1,...,G,_1} is equivalent to picking the correspond-
ing subset of{Ko, K1, ..., K,_1}. This subset generates a new Model (2) and hence
must have a globally attracting positive attenuant cycle. Thus, dvgrgriodic subset of
{Go, G1, ..., Gp_1} consisting of at least two of thé ; has a globally attracting positive
attenuant cycle (assumptign)).

Theorem 9. If Model (6) satisfies assumptiofd) ands is not a multiple ofp, then the
model has a globally attracting positive attenuant cycle.

Proof. Let

(x1(0), x2(0), ..., x5(0)) = (x1, x2, ..., Xy)

be a fixed set of initial age class population densities. &gt G mod »- The fixed initial
condition is mapped t6Go(x;), x1, x2, ..., xs—1) by Model (6). The next image is

(G1(x5-1), Golxs), X1, X2, ..., Xg_2).
After s iterations the image is
(Gy—1(x1), Gs—2(x2), ..., G1(x4-1), Go(xy)).

The image aftes + 1 iterations is

(Gs(Go(xy)), Gy—1(x1), Gy—2(x2), ..., G1(x;-1)).
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After 2s iterations the image is

(G25-1(Gs-1(x1)), G25-2(Gs-2(x2)), ..., Gs41(G1(x5-1)), G5 (Go(xy))).
After 3s iterations the image is

(G35-1(G25-1(Gs-1(x1))), G3y—2(G25-2(Gs-2(x2))). ...,
G204+1(Gs11(G1(x5-1))), G24 (G (Go(xy))))-
After ps iterations the image is

(Gps—1(-++ (G3s-1(G25-1(Gs-1(x1)))) - --),
Gps—2(-++ (G3s—2(G2—2(Gy—2(x2)))) - +*)s .- .,
Gps—s+1(- (G2+1(Gs+1(G1(x5-0))) )5
G ps—s(-++(G2s(Gs(Go(x)))) -+-)).
Observe that théth image ofx; under the composition map

Gps—jo--0G3_joGyy_joGy_;j

is the population density of thigh age class aftéps generations. Sinceis not a multiple
of p, the composition

Gps—jo--0G3_joGyy_joGy_;j

is made up of at least two differedt,. Therefore, by assumptiqa), the periodic dynam-
ical system generated by

{foja G2.¥7j7 G3S*ja"'5GpS*j}

has a globally attracting positive attenuant cycle. We denote the first point andthide
by y;. By a theorem of Elaydi and Sacker [11-15], there is a positive intagauch that
mr =p.

Next, we show thaty1, yo, ..., ys) is the first point on a globally attracting positive
attenuant cycle for Model (6). Since eaghis the first point on a globally attracting cycle
whose period dividep, after ps iterations Model (6) mapéyi, y2, ..., ys) to itself. That
is, (v1, ¥2, ..., ys) is the initial point on a cycle for Model (6).

Now, we show that the cycle is globally attracting. Using iterations of Model (6)
and the global attracting nature of eagh, we see that any initial condition lim-
its on (y1, y2,...,ys). The continuity of Model (6) implies that the cycle starting at
(y1, y2, ..., ys) is globally attracting. To see that this orbit is attenuant, we consider the
orbit of the first age class. We break the figst iterates of the orbit into groups that
ares iterations apart. These groups consist of the firsterations ofy; under the peri-
odic dynamical systeniG;_;, Gas—;, G3s—j, ..., Gps—j}. Since the cycle starting at
using the periodic dynamical systef&_;, Gos—j, Gas—j, ..., Gps—;} is attenuant, the
average of the corresponding group is less than the average of the carrying capacities of
{Gs—j, G2s—j, Ga—j, ..., Gps—j}. Since the average of the averages is less than the aver-
age of larger averages, the average of the fissiterates ofy; is less than the average of
the carrying capacities 4iGo, G1, G2, ..., G ps—1}. Each of theG, appear in this list the
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same number of times, the average of the carrying capaciti@s0iG1, Go, ..., G ps—1}

equals the average of the carrying capacitie§®f, G1, G2, ..., G_1}. So the first age

class satisfies the inequality of an attenuant cycle. Each of the other age classes have orbits
which are time shifts of that for the first age class. Thus each age class satisfies the inequal-
ity of an attenuant cycle and hence the globally attracting positive cycle is attenuant.

To apply Theorem 9, we consider Model (6) with 2 age classes in a period 3 envi-
ronment. Since every periodic dynamical system formed from a sub4€tiG1, G2}
has a globally attracting positive attenuant cycle, jletbe the first point on this cy-
cle for the periodic dynamical systefw1, Go, G2}. Let G1(y1) = y2 and Go(y2) = y3.
Now G2(y3) = y1 since y; has period 3 for this periodic dynamical system. The ini-
tial population sizegys, y2) are mapped tdGo(y2), y1) = (y3, y1). The next image is
(G1(y1), y3) = (2, y3). The third image iS(G2(y3), y2) = (y1, y2). Thus (y1, y2) has
period 3 a divisor ofps = 6 for Model (6). Note that both age classes cycle through per-
mutations of the attenuant cydle, y2, y3} and hencéy1, y») starts an attenuant cycle for
the model. Next, we demonstrate this with a Beverton—Holt example.

Example 10. In Model (6) let the fertility function
wK;
K+ (u—Dx’
whereK; = K;,3 and the number of age classes 2. Then the corresponding carrying

capacities of the Beverton—Holt modely, G1 andG; are Ko, K1 and K3, respectively.
The fixed point 0fG2 0 Ggo G1 is

gt,x)=

gy — W2t DKoK1Ky
KoK2 + nK1K2 + n2KoK1'
Now
(1% + 1+ D KoK1K>2
y2=G1(y1) = 5
K1K7 + uKoK1 + u“Kok>
and
(12 + 1+ DKoK1K>

y3=Go(y2) = Go(G1(y) = KoK1+ 11KoKa + 1K1K

The initial condition(y1, y2) is the starting point for a globally attracting positive attenuant
3-cycle (Theorem 9).

6. Multiple overlapping chaoctic attractors

In constant environments, single species discrete-time population models without age
structure and without the allee effect, like the Beverton—Holt and Ricker models, do not
have multiple (coexisting) attractors [19,20,33]. However, in periodic environments the
Ricker model without age structure and without the allee effect admit multiple cyclic (non-
interval) or chaotic (interval) attractors [16—18]. In this section, we discuss the implications
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of these attractors on periodic age structured models. Periodicity is not the only mechanism
for generating multiple attractors. In constant environments, single species discrete-time
population models with age structure and without the allee effect can have multiple (coex-
isting) attractors [47].

An open setlJ is atrapping regionfor a continuous dynamical systef: X — X if
F(U) Cc U whereX is a locally compact metric space abidis a compact subset of.
A trapping region forF, U, generates the nonempty compact attragtet (>, F' (U).

Lemma 11. Let F and G be continuous dynamical systemsXnif U is a trapping region
for both F and G, thenU is a trapping region for bottG o F and F o G.

Proof. SinceF(U) c U andG(U) cU,Go F(U) cU andF o G(U) C U. ThusU is a
trapping region for botlG o F andF o G. O

By Lemma 11, when any two dynamical systems have the same trapping région,
then the systems and their compositions have attractdys in
We will use the following perturbation result of Franke and Selgrade [16].

Lemma 12. Let F be a continuous dynamical systemXnif U is a trapping region forF’,
then there is a neighborhood of F in the function space of continuous mapsXsuch
that G € V implies thatU is a trapping region forG.

Now we make a connection between trapping regions for the one-dimensional model,
f(xs) = x52(x;), and trapping regions for the autonomaudimensional age class model,
System (7).

Theorem 13. If U C R.is a trapping region forf (xs) = x;g(xs) with attractor A, then
the positively F-invariant set,U x U x --- x U C R%, is a trapping region forF*
with attractor A x A x --- x A C RS, whereF :R% — R’ is Systen{7). Furthermore,
A x A x---x Ais an attractor forF.

Proof. SinceU is a trapping region foy, f(U) C U.

FiUxUx---xU)=f(U)cCU.

Forie{2,3,...,s}, F(IUxUx---xU)=U.ThusU x U x ---x U is F invariant. For
eachi €{1,2,...,s},

FFUxUx---xU)=fU)CU.

HenceU x U x --- x U is a trapping region foF*. Now
FFUXxUx--xU)=fU)x f(U)x---x f({U)

SO
ﬂF”(Uxe.-.><U):ﬂfi(ﬁ)xf"(U)x.-.xf"(U)

i=0 i=0
=AXAX---xXA.
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Since f(U) is a compact subset of the open Eeaind disjoint from the complement of
UinRy,a=inf{|]p —q|: pe f(U) andg € R;\U} > 0. Foreach € {1,2,...,s} let
U={qeRy: |p—ql|<a/iforsomep e f(U)}. Then eactU; is open and

fU)CU;CcUsCUs_1CUs 1 CUg_pC---CUpCULCU.
Thus, f(U1) C f(U) C U and eaclU; is a compact subset &f.
F(Us x Ug_1 x---x U1)
= f(U1) x Uy x Us_1 x -+ x U CUs x Ug_1 X -++ x U1.
HenceU; x U;_1 x --- x Uy is a trapping region foF with attractorA x A x---x A. O

To demonstrate Theorem 13 with a specific model, we consider System (7) with two
age classes and classic Ricker growth function.

Example 14. In System (7) lek = 2 andg(x) = ¢ @=*/K) wherer andK are positive.

Whenr =2.1 andK =1, f(x) = xe’1=*/K) has a 2-cycle attractor}, with trapping
region, U, consisting of two open intervalgt x A is a 4 point attractor for Example 14
with trapping region consisting of four rectangles. As shown in [47}x A is a 4-cycle
periodic attractor.

Whenr = 2.8 andK = 1, f(x) = xe"1=*/K) has a chaotic attractor with positive Lya-
punov exponentd, consisting of two closed intervals. Its trapping regidh,consists of
two open intervalsA x A, a chaotic attractor with positive Lyapunov exponents for Ex-
ample 14, consists of four closed rectangles. The trapping region consists of four open
rectangles. The four rectanglesinx A “effectively rotate” 90 underF so that the diag-
onal pairs are invariant undé. HenceF? has two coexisting chaotic attractors.

Figure 1 shows the four chaotic rectangles. This figure also shows that each of the
invariant setsA andB, given in Lemma 3 contain four piece chaotic subsets (blue lines and
black curves). These sets are attractorgfoestricted tad andB, respectively. A trapping
region for the chaotic attractor iA is {1} x U U U x {1} and a trapping region for the
chaotic attractor irB is {(x,x) e R2: x e UYU{(f(x),x) e R2: x e U}.

The next example can be viewed as making Example 14 periodic with period 2.

3
X,

A &-piece chaotic attractor together with two invariant sets

Fig. 1. 4-piece chaotic attractor together with two invariant sets (A, blue, and B, black).
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Example 15. In System (6) lek = 2 andg(z, x) = ¢ 1=*/(K+c(=1") wherer, c andK are
positive.

Whenr = 2.1, K =1, andc is a small positive number, the periodic Ricker model with-
out age structuref (¢, x) = xe"1=*/(K+c(=1) 'has two 2-cycle attractors as predicted
by the perturbation theorem of Henson [21,22]. Each of these 2-cycle attractors produce
a 4-cycle attractor for the corresponding 2-periodic age structured Ricker model, Exam-
ple 15, as seen in Fig. 2 whete=0.1.

Franke and Selgrade studied attractors in periodic dynamical systems [16]. In their
framework, an attractor for the 2-periodic dynamical sys{éif, F1} consists of an at-
tractor for the composition mapl o FO together with the image of this attractor under
FO. Whenc =0, it is easy to see thdfl= FO= F and F1o FO = F? (Example 15).

In addition, wherr = 2.8 andK = 1, the two chaotic attractors @2 are pairs of diago-

nal rectangles that are mapped onto each other ufdtaration. Lemma 12 implies that
whenc is small, the trapping regions fd@t? are also trapping regions f@t1o F0. Thus,

F1o FO has two attractors which are “close” to the attractor#8f The images of these
attractors undef'0, however, do not need to be each other. In this @@, F1} has two
distinct attractors. Figure 3 shows two overlapping attractors with positive Lyapunov ex-

A pair of 4-cycle attractors

XI 3

Fig. 2. Two coexisting period 4 attractors.

3
x,  Apair of 4-piece overlapping chaotic attractors

X3

Fig. 3. A 4-piece chaotic attractor (black) coexisting with another 4-piece chaotic attractor (red) and the two
attractors overlap.
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ponents (black and red) when= 0.1. A point starting in one of the black major diagonal
rectangles stays in the black rectangles for all time, while a point starting in one of the red
minor diagonal rectangles stays in the red rectangles for all time.

7. Conclusion

This paper focuses on an old ecological question. Are species adversely affected by
a periodic environment relative to a constant environment of the same average carry-
ing capacity? Henson used a “contour method” to study the effect of periodicity in the
Levin—Goodyear Leslie-type 2-age class fisheries model with 2-periodic forcing. We use a
p-periodically forcedp-age class, discrete time population model to study the effects of
periodic fluctuations and age-structure on populatigns ().

Results of Coleman [4], Coleman and Frauenthal [5], Nisbet and Gurney [41], and
Rosenblat [43] on the continuous-time logistic equation (without age-structure) implied
that a periodic carrying capacity is deleterious. Cushing [8] and Rosenblat [43] have since
shown that this assertion is model dependent.

In a recent paper, Cushing showed that a periodic environment is always deleterious for
populations modeled by a class of monotone difference equations without age-structure.
Our results support this assertion whenever there is no synchrony between the number of
age classes and the period of the environment. In addition, in contrast to Cushing’s results
for monotone equations and the periodic Beverton—Holt model (without age structure), we
show that a periodic environment is not always deleterious for age-structured population
models. We also show that a periodic environment does not generate resonant cycles in our
age-structured population model.

Periodically forced population models with or without age-structure are capable of gen-
erating multiple attractors with complicated structures [2,16,21,23,47-49]. Studies on the
structures of the coexisting attractors and their basin boundaries would be welcome [1].
The use of periodicity as a mechanism to increase the number of attractors combined with
age-structure may increase the likelihood of species survival in periodically varying envi-
ronments.
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