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In periodically varying environments, population models generate periodic dynamical systems. To
understand the effects of unidirectional dispersal on local patch dynamics in fluctuating environments,
dynamical systems theory is used to study the resulting periodic dynamical systems. In particular,
a unidirectional dispersal linked two patch nonautonomous metapopulation model is constructed and
used to explain the qualitative dynamics of linked versus unlinked independent patches. As in single-
patch, single-species population models, unidirectional nonautonomous models support multiple
attractors where local population models support single attractors.
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1. Introduction

Populations are often subdivided in space and spread among independent patches that are

connected via dispersal or migration [1–6,8–10,15,17,18,20–28,33–34,40–42]. The

dynamics of discretely reproducing populations can be complex, especially when vital rates

are density-dependent and are subject to environmental stochasticity [13,16,29,31,35–

37,40]. Many scientists have used simple autonomous and nonautonomous nonlinear

difference equations to model single-species discretely reproducing closed populations

[2,6,7,16,25,32,35–42]. Others have used autonomous nonlinear systems of difference

equations to model spatially-explicit metapopulations [1,3–5,15,22–24,33,42].

The focus of this paper is on the effects of unidirectional dispersal on local dynamics in

periodically varying environments. In particular, a unidirectional dispersal linked two patch

nonautonomous metapopulation model is used to study the qualitative dynamics of linked

versus unlinked independent patches.

Section 2, the preliminaries section, introduces a very general single-patch single-species

nonautonomous population model without dispersal [16]. In Section 3, we introduce the

main model, a two-patch unidirectional dispersal linked nonautonomous metapopulation

model. Such nonautonomous discrete-time models generate periodically forced dynamical

systems [11,12,14,16]. In Section 4, we use dynamical systems theory to understand the

relation between local patch dynamics and metapopulation dynamics. In Section 5, we test

Journal of Difference Equations and Applications

ISSN 1023-6198 print/ISSN 1563-5120 online q 2005 Taylor & Francis Group Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/10236190412331334563

*Corresponding author. Email: ayakubu@howard.edu

Journal of Difference Equations and Applications, Vol. 11, No. 7, June 2005, 687–700



our results on specific metapopulation models, and the implications of our results are

discussed in Section 6.

2. Single patch nonautonomous population models

In periodically varying environments, local Patch i [ {1; 2} dynamics at generation t after

reproduction but before dispersal is modeled by the nonautonomous equation

xiðt þ 1Þ ¼ xiðtÞgiðt; xiðtÞÞ; ði ¼ 1; 2Þ ð1Þ

where xi(t) denotes the population size, and the per capita growth rate, gi :

Zþ £ ½0;1Þ! ð0;1Þ; is assumed to be positive and differentiable ðC1 on ½0;1ÞÞ; and

where there exists a smallest positive integer Ti satisfying giðt þ Ti; xÞ ¼ giðt; xÞ: That is,

each gi is periodic with period Ti.

When each Patch i local dynamics is governed by the Ricker model and the environment is

periodic, then the uncoupled System (1) becomes

xiðt þ 1Þ ¼ xiðtÞ exp Ri 1 2
xiðtÞ

KiðtÞ

� �� �
; ði ¼ 1; 2Þ ð2Þ

where the environmental carrying capacity satisfies Kiðt þ TiÞ ¼ KiðtÞ for all t [ Zþ and

Ri . 0 is the demographic characteristic of the species. System (2), like the classic Ricker

model, is capable of supporting period-doubling bifurcations route to chaos. However, unlike

the classic Ricker model, System (2) is capable of generating multiple cyclic attractors

[16,39,41].

To study the population dynamics of System (1), for each Patch i [ {1; 2}; we define a

general smooth function

hi : Zþ £ ½0;1Þ! ½0;1Þ

that generates the nonautonomous difference equation

xiðt þ 1Þ ¼ hiðt; xiðtÞÞ; t [ Zþ

where hiðt; xiðtÞÞ ¼ xiðtÞgiðt; xiðtÞÞ for all t $ 0: Thus, hiðt þ Ti; xiðtÞÞ ¼ hiðt; xiðtÞÞ for all

t . 0:

3. Two patch periodically forced unidirectional dispersal models

Hastings [27], Gyllenburg et al. [20], Doebeli [8,9], Yakubu [40], Yakubu and Castillo-

Chavez [41] have studied discrete-time, autonomous, single-species metapopulation models

that implicitly assume that dispersal is either bidirectional or unidirectional. A two-patch

version of these metapopulation models is given by the following system of coupled

nonlinear autonomous difference equations:

x1ðt þ 1Þ ¼ ð1 2 d12Þh1ðx1ðtÞÞ þ d21h2ðx2ðtÞÞ;

x2ðt þ 1Þ ¼ d12h1ðx1ðtÞÞ þ ð1 2 d21Þh2ðx2ðtÞÞ;

)
ð3Þ

where hiðxiðtÞÞ ¼ xiðtÞgiðxiðtÞÞ: In System (3), reproduction occurs prior to dispersal within
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each generation and in each patch. After reproduction, the constant fraction d12 [ ð0; 1Þ of

the population disperses from Patch 1 to 2 while the constant fraction d21 [ ð0; 1Þ disperses

from Patch 2 to 1. Dispersal is bidirectional when d12; d21 [ ð0; 1Þ: However, when either

d12 ¼ 0 and d21 ¼ d [ ð0; 1Þ or d21 ¼ 0 and d12 ¼ d [ ð0; 1Þ; then dispersal is

unidirectional.

To account for a periodic fluctuating environment, the dynamics at generation t of a single-

species metapopulation under unidirectional dispersal are modeled with equations of the

general form

x1ðt þ 1Þ ¼ ð1 2 dÞ h1ðt; x1ðtÞÞ;

x2ðt þ 1Þ ¼ dh1ðt; x1ðtÞÞ þ h2ðt; x2ðtÞÞ;

)
ð4Þ

where the dispersal coefficient d [ ð0; 1Þ and hiðt; xiðtÞÞ ¼ xiðtÞgiðt; xiðtÞÞ and hiðt þ

Ti; xiðtÞÞ ¼ hiðt; xiðtÞÞ for each i [ {1; 2} and for all t [ Zþ: System (4) is a nonautonomous

metapopulation model under unidirectional dispersal. To study the long-term dynamics of

System (4), we consider the nonautonomous hierarchical model

xðt þ 1Þ ¼ f ðt; xðtÞÞ; xð0Þ ¼ x [ Rn
þ

yðt þ 1Þ ¼ gðt; xðtÞ; yðtÞÞ; yð0Þ ¼ y [ Rm
þ

9=
; ð5Þ

where f : Zþ £ Rn
þ ! Rn

þ and g : Zþ £ Rnþm
þ ! Rm

þ are continuous functions, and where

there exist smallest positive integers T1 and T2 satisfying f ðt þ T1; xðtÞÞ ¼ f ðt; xðtÞÞ and

gðt þ T2; xðtÞ; yðtÞÞ ¼ gðt; xðtÞ; yðtÞÞ; respectively. System (5) is a generalization of the

unidirectional dispersal metapopulation model, System (4).

We use the following notation, definitions and results to analyze System (5). Let T ¼

lcmðT1; T2Þ: For each i [ {0; 1; . . .; T 2 1}; define Fi : Rnþm ! Rnþm by Fiðx; yÞ ¼

ð f ði; xÞ; gði; x; yÞÞ: Fi is an example of a discrete dynamical system on Rnþm: For i $ T; let

Fiðx; yÞ ¼ FimodðTÞðx; yÞ: In the following general definitions, X is a locally compact metric

space.

Definition 1 A T-periodic discrete dynamical system is a sequence of maps

{F0;F1; . . .;FT21} from X to X such that Fi ¼ FimodðTÞ for all i [ Zþ and where T is the

smallest such integer.

Consequently, a T-periodic discrete dynamical system is a finite sequence of T maps.

Proposition 1 T ¼ lcmðT1; T2Þ is the smallest period of the T-periodic discrete dynamical

system {F0;F1; . . .;FT21}:

Proof ðiþ TÞmodðT1Þ ¼ imod ðT1Þ and ðiþ TÞmod ðT2Þ ¼ imodðT2Þ imply that

Fi ¼ FimodðTÞ: Suppose that there is an integer T̂ such that Fi ¼ FimodðT̂Þ: If T̂ is not a

multiple of T1, then T̂ ¼ aT1 þ d where d is a positive integer less than T1. Now since

Fi ¼ FimodðT̂Þ; f ðt; xðtÞÞ ¼ f ðt þ T̂; xðtÞÞ ¼ f ðt þ aT1 þ d; xðtÞÞ ¼ f ðt þ d; xðtÞÞ: But this con-

tradicts that T1 is the smallest such positive integer. If T̂ is not a multiple of T2, then

T̂ ¼ aT2 þ d where d is a positive integer less than T2. Now since Fi ¼ FimodðT̂Þ;

gðt; xðtÞ; yðtÞ ¼ gðt þ T̂; xðtÞ; yðtÞÞ ¼ gðt þ aT2 þ d; xðtÞ; yðtÞÞ ¼ gðt þ d; xðtÞ; yðtÞÞ: But this

contradicts that T2 is the smallest such positive integer. Thus T̂ is a multiple of

T ¼ lcmðT1; T2Þ and T is the smallest integer such that Fi ¼ FimodðTÞ: A
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To define the orbit of a point x0 [ X; we let xi ¼ Fi21ðxi21Þ for each i $ 1:

Definition 2 The orbit of a point x0 [ X under the T-periodic discrete dynamical system

{F0;F1; . . .;FT21} is {x0;F0ðx0Þ;F1ðx1Þ; . . .;FT21ðxT21Þ; . . .}:

Definition 3 A point x0 is a fixed point for the T-periodic discrete dynamical system

{F0;F1; . . .;FT21} if its orbit is {x0; x0; . . .; x0; . . .}:

Fixed point dynamics are rare in periodic fluctuating environments (Proposition 2).

Proposition 2 If for some i – j; Fi and Fj have unique fixed points that are not equal, then

the T-periodic discrete dynamical system {F0;F1; . . .;FT21} has no fixed points.

Proof Suppose x1 is a fixed point of the T-periodic discrete dynamical system

{F0;F1; . . .;FT21}: Then Fiðx1Þ ¼ x1 for each i. This is a contradiction, since Fi and Fj do

not have a fixed point in common. A

Recall that each Fi is a single (autonomous) discrete dynamical system. A point x0

is said to be a ( prime) period k point of Fi if k is the least positive integer for which

Fk
i ðx0Þ ¼ x0: When x0 is a (prime) period k point of Fi, then its orbit under Fi iterations,

x0;Fiðx0Þ;F
2
i ðx0Þ; . . .;F

k21
i ðx0Þ; . . .

� �
;

is a k-cycle of Fi.

Definition 4 An orbit {x0; x1; . . .; xk21; . . .} is a k-cycle of the T-periodic discrete

dynamical system {F0;F1; . . .;FT21} if xi ¼ ximodðkÞ for all i [ Zþ and k is the smallest such

integer.

Henson [29], Franke and Selgrade [14] as well as Franke and Yakubu [16] have shown that

T-periodic dynamical systems are capable of supporting k-cycles.

Proposition 3 Let {x0; x1; . . .; xk21; . . .} be a k-cycle of each Fj. Then {x0; x1; . . .; xk21; . . .}

is a k-cycle of the T-periodic discrete dynamical system {F0;F1; . . .;FT21}:

Proof Since {x0; x1; . . .; xk21; . . .} is a k-cycle of each Fj, then for each xl [

{x0; x1; . . .; xi; . . .} we have

FjðxlÞ ¼ xlþ1 and Fnð. . .F1ðF0ðx0ÞÞ. . .Þ ¼ xnþ1:

Moreover, the orbit of x0 under the T-periodic dynamical system {F0;F1; . . .;FT21} is

{x0;F0ðx0Þ; F1ðF0ðx0ÞÞ; . . .;Fnð. . .F1ðF0ðx0ÞÞ. . .Þ; . . .}:

A

4. Periodically forced T-periodic dynamical systems

In System (5), the first set of equations are functions of the two variables, t and x while

the second set are functions of the three variables t, x and y. Once the first set of

equations have a k-cycle, its insertion in the second set of equations makes the second

set of equations periodically forced nonautonomous difference equations on R
m:

Such equations are capable of supporting cycles with periods different from k. In [40],

Yakubu studied periodically forced autonomous difference equations.
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To study periodically forced nonautonomous difference equations via System (5), assume

{ f 0; f 1; . . .; f T121} is a T1-periodic dynamical system on R
n; {g0; g1; . . .; gT221} is a

T2-periodic sequence of maps from R
nþm to R

m and {x0; x1; . . .; xk21; . . .} is a k-cycle for the

T1-periodic dynamical system { f 0; f 1; . . .; f T121}: Recall that System (5) is

Fi : Rnþm ! R
nþm defined byFiðx; yÞ ¼ ðf imodðT1ÞðxÞ; gimodðT2Þðx; yÞÞ;

which has period T ¼ lcmðT1; T2Þ (see Proposition 1).

For each i [ Zþ; define the periodically forced (nonautonomous) maps

F̂i : Rnþm ! R
nþm by F̂iðx; yÞ ¼ ð f imodðT1ÞðxÞ; gimodðT2ÞðximodðkÞ; yÞÞ;

and

Ĝi : Rm ! R
m by ĜiðyÞ ¼ ðgimodðT2ÞðximodðkÞ; yÞÞ:

Lemma 1 There exists a p such that {F̂0; F̂1; . . .; F̂i; . . .} is a p-periodic discrete dynamical

system, where p is a factor of the lcmðk;T1;T2Þ:

Proof Let A ¼ lcm(k,T1,T2). Since ðiþ AÞmodðT1Þ ¼ imodðT1Þ; ðiþ AÞmodðT2Þ ¼

imodðT2Þ; and ðiþ AÞmodðkÞ ¼ imodðkÞ; F̂i ¼ F̂iþA: Thus {F̂0; F̂1; . . .; F̂i; . . .} is a

p-periodic dynamical system, where p is less than or equal to A. If p does not divide A,

then A ¼ lpþ d where 0 , d , p: This would mean that F̂i ¼ F̂iþA ¼ F̂iþlpþd ¼ F̂iþd: But

this contradicts that p is that smallest natural number such that F̂i ¼ F̂iþp: A

Proceeding exactly as the previous proof, the following result is immediate:

Lemma 2 There exists a q such that {Ĝ0; Ĝ1; . . .; Ĝi; . . .} is a q-periodic discrete dynamical

system, where q is a factor of the lcmðk;T2Þ:

Now, we make a connection between System (5) and doubly periodically forced

(nonautonomous) maps.

Lemma 3

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21; . . .}

is an l-cycle for the p-periodic dynamical system {F̂0; F̂1; . . .; F̂i21} if and only if

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21; . . .}

is an l-cycle for the T-periodic dynamical system {F0;F1; . . .;Fi21}:

Proof Note that the first coordinates of Fi and F̂i; are identical. Since gimodðT2Þ is used in the

second coordinate of Fi and F̂i; and the orbit of x0 under { f 0; f 1; . . .; f T121} has ximodðkÞ ¼ xi;

the second coordinates are also equal on ðxi; yiÞ and the orbit of ðx0; y0Þ is the same under

{F0;F1; . . .;FT21} and {F̂0; F̂1; . . .; F̂T21}: A

Let x1 be a fixed point of F : I ! I: Then x1 is said to be stable if for any 1 . 0; there

exists d . 0 such that jx2 x1j , d implies jFnðxÞ2 x1j , e for all n [ {1; 2; . . .}; and all

x [ I: Also the fixed point x1 is said to be attracting if there exists h . 0 such that

jx2 x1j , d implies limn!1F
nðxÞ ¼ x1: Whenever h ¼ 1; then x1 is said to be globally

attracting. We use the following non-standard definition of stability to analyze cyclic

“attractors” of System (5).
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Definition 5 If X is a manifold, then a k-cycle, {p0; p1; . . .; pi; . . .}; of a p-periodic

dynamical system {H0;H1; . . .;Hi; . . .} is L-asymptotically stable if the magintude of all

eigenvalues of DHpk21ð. . .ðH1ðH0ðp0ÞÞÞ. . .Þ are less than one.

A k-cycle, {p0; p1; . . .; pi; . . .} is L-stable if the magnitude of all eigenvalues of

DHpk21ð. . .ðH1ðH0ðp0ÞÞÞ. . .Þ are less than or equal to one and those with magnitude one are

simple.

We say that a k-cycle is attracting whenever it is L-asymptotically stable. In [12,13],

Elaydi and Sacker proved that, when a k-periodic discrete dynamical system has a globally

stable l-cycle then l must be a divisor of k. Independent of stability, when there exists an

l-cycle in System (5) then k, the period of x0, must divide l.

Theorem 1 Suppose

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

is an l-cycle for the T-periodic discrete dynamical system

{F0;F1; . . .FT21} ðSystem ð5ÞÞ;

then ðl=kÞ [ Zþ:

Proof Since

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

is an l-cycle, {x0; x1; x2; . . .} is a cycle with period less than or equal to l. Since its period is k,

proceed exactly as in the proof of Lemma 3 to show that k must divide l. A

Theorem 2 System (5) has

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

as an l-cycle if and only if

{x0; x1; . . .; xi; . . .}

is a k-cycle for the T1-periodic dynamical system {f 0; f 1; . . .; f T121}; and

{y0; y1; . . .; yi; . . .}

is a r-cycle for the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝi; . . .} where l ¼ lcmðk; rÞ.

Proof Suppose

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

is an l-cycle, then

{x0; x1; . . .; xi; . . .}

is a k-cycle for the T1-periodic dynamical system {f 0; f 1; . . .; f T121} and

{y0; y1; . . .; yi; . . .}

is an r-cycle for the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝi; . . .} with period less

than or equal to l. Since its period is r, a proof similar to that in Lemma 3 shows that r must

divide l. Combining this with Theorem 1 we have that both r and k divide l. So l $ lcmðk; rÞ:
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On the other hand, both the xi and the yi repeat after lcm(k,r) times (that is, the orbits of x0 and

y0 are {x0; x1; . . .; xlcmðk;rÞ21; x0; . . .} and {y0; y1; . . .; ylcmðk;rÞ21; y0; . . .}; respectively). So

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

is a cycle with period less than or equal to lcmðk; rÞ: Thus, l ¼ lcmðk; rÞ:

Suppose {y0; y1; . . .; yi; . . .} is an r-cycle for the q-periodic dynamical system

{Ĝ0; Ĝ1; . . .; Ĝi; . . .} and l ¼ lcmðk; rÞ; then {ðx0; y0Þ; ðx1; y1Þ; . . .; ðxi; yiÞ; . . .} is a cycle for

System (5). Its period must be the least common multiple of the periods of {x0; x1; . . .; xi; . . .}

and {y0; y1; . . .; yi; . . .}: Thus, it is an l-cycle with l ¼ lcmðk; rÞ: A

Theorem 3 System (5) has

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ. . .}

as an L-asymptotically stable l-cycle if and only if

{x0; x1; . . .; xk21; . . .}

is an L-asymptotically stable k-cycle of the T1-periodic dynamical system { f 0; f 1; . . .; f T121}

and

{y0; y1; . . .; yr21; . . .}

is an L-asymptotically stable r-cycle of the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21};

where l ¼ lcmðk; rÞ:

Proof

DF̂i ¼
Dx f i 0

0 DyĜi

 !
; DFi ¼

Dx f i 0

Dxgi Dygi

 !
and

Dygiðxi; yÞ ¼ DygimodðT2ÞðximodðkÞ; yÞ ¼ DyĜiðyÞ:

This implies that DFi, a block triangular matrix, has diagonal entries equal to the diagonal

entries of the diagonal block matrix DF̂i when x ¼ xi: Thus, DFi and DF̂i have the same

eigenvalues when x ¼ xi:

Since l ¼ lcmðk; rÞ; T ¼ lcmðT1; T2Þ and q is a factor of lcmðk; T2Þ; {x0; x1; . . .; xk21} is an

L-asymptotically stable k-cycle of the T1-periodic discrete dynamical system

{f 0; f 1; . . .; f T121} and {y0; y1; . . .; yr21; . . .} is an L-asymptotically stable r-cycle of the q-

periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21} if and only if DfTl21(. . .( f1( f0(x0))). . .) and

DĜTl21ð. . .ðĜ1ðĜ0ðx0ÞÞÞ. . .Þ have all eigenvalues inside the unit circle. Thus the eigenvalues of

DFTl21(. . .(F1(F0(x0,y0))). . .) and DF̂Tl21ð. . .ðF̂1ðF̂0ðx0; y0ÞÞÞ. . .Þ are inside the unit circle and

System (5) has {ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .} as an L-asymptotically stable l-cycle if

and only if {x0; x1; . . .; xk21; . . .} is an L-asymptotically stable k-cycle of the T1-periodic

discrete dynamical system {f 0; f 1; . . .; f T121} and {y0, y1,. . .,yr21,. . .} is an L-asymptotically

stable r-cycle of the q-periodic discrete dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21}; where

l ¼ lcmðk; rÞ: A

When the orbit of x0 is a single point x1, ximodðkÞ ¼ x1 and the following result is

immediate.
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Corollary 1 If {x1} is an L-asymptotically stable fixed point of f ðt; xðtÞÞ :

Zþ £ Rn ! Rn; and

{y0; y1; . . .; yr21; . . .}

is an L-asymptotically stable r-cycle of gðt; x1; yðtÞÞ : Zþ £ Rm ! Rm; then

{ðx1; y0Þ; ðx1; y1Þ; . . .; ðx1; yr21Þ; . . .}

is an L-asymptotically stable r-cycle of System (5).

Theorem 4 Assume all orbits of System (5) are bounded. Then System (5) has

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

as a globally attracting l-cycle if and only if

{x0; x1; . . .; xk21; . . .}

is a globally attracting k-cycle of the T1-periodic dynamical system { f 0; f 1; . . .; f T121} and

{y0; y1; . . .; yr21; . . .}

is a globally attracting r-cycle of the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21}; where

l ¼ lcmðk; rÞ:

Proof Suppose System (5) has

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}

as a globally attracting l-cycle, then by Theorem 3

{x0; x1; . . .; xk21; . . .}

is an attracting k-cycle of the T1-periodic dynamical system { f 0; f 1; . . .; f T121} and

{y0; y1; . . .; yr21; . . .}

is an attracting r-cycle of the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21}; where

l ¼ lcmðk; rÞ: In fact since the first coordinate of System (5) is precisely the T1-periodic

dynamical system {f 0; f 1; . . .; f T121};

{x0; x1; . . .; xk21; . . .}

is globally attracting. Independent of initial conditions, the second coordinate of System (5)

limits on {y0, y1,. . ., yr21,. . .}. So if the first coordinate of the initial condition is x0, the

second coordinate also limits on {y0, y1,. . ., yr21,. . .}. Thus {y0, y1,. . .yr21,. . .} is globally

attracting for the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21}:

Now suppose {x0; x1; . . .; xk21; . . .} is a globally attracting k-cycle of the T1-periodic

dynamical system { f 0; f 1; . . .; f T121} and {y0; y1; . . .; yr21; . . .} is a globally attracting r-cycle

of the q-periodic dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21};, where l ¼ lcmðk; rÞ: By Theorem 3,

System (5) has {ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .} as an attracting l-cycle. Thus

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .} has a bounded open neighborhood U £W which is

positively invariant under H ¼ FTk21 +FTk22 +· · ·+F0 and every point in U £W is attracted to

the l-cycle under System (5).

Let ðx; yÞ [ Rnþm: By boundedness of orbits, there is a compact set C that contains the H

orbit of ðx; yÞ: Since {y0; y1; . . .; yr21; . . .} is a globally attracting r-cycle of the q-periodic
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dynamical system {Ĝ0; Ĝ1; . . .; Ĝq21}, the orbit of ðx0; yÞ under H gets into U £W . Since C is

compact, there is an integer j such that H jðx0; yÞ [ U £W for all ðx; yÞ [ C: By continuity

there is a d . 0 such that if kx2 x0k , d; then H jðx; yÞ stays close enough to H jðx0; yÞ so

that H jðx; yÞ [ U £W . Since {x0; x1; . . .; xk21; . . .} is a globally attracting k-cycle of the

T1-periodic dynamical system { f 0; f 1; . . .; f T121}; the orbit of x under {f 0; f 1; . . .; f T121}

eventually gets within d of x0. Thus ðx; yÞ is attracted to the l-cycle

{ðx0; y0Þ; ðx1; y1Þ; . . .; ðxl21; yl21Þ; . . .}: A

5. Application

To apply our results to a specific metapopulation model, we construct a nonautonomous

unidirectional dynamical system based on the classic Ricker model. For each i [ {1; 2}

we let

hiðt; xiÞ ¼ xiexp Ri 1 2
xiðtÞ

Ki þ aið21Þt

� �� �

where Ri, Ki, ai . 0 and Ki 2 ai . 0: Then System (5) becomes

x1ðt þ 1Þ ¼ ð1 2 dÞx1ðtÞ exp R1 1 2 x1ðtÞ
K1þa1ð21Þt

� �� �
;

x2ðt þ 1Þ ¼ dx1ðtÞ exp R1 1 2 x1ðtÞ
K1þa1ð21Þt

� �� �
þ x2ðtÞ exp R2 1 2 x2ðtÞ

K2þa2ð21Þt

� �� �
:

9>>=
>>; ð6Þ

In System (6), the species persists in Patch 2. However, it goes extinct in Patch 1 whenever

the unidirectional dispersal rate is high. We summarize these in the following result.

Theorem 5 The origin is unstable, and ð1 2 dÞ expðR1Þ , 1 implies that the v-limit set of

every positive population vector in System (6) is a subset of {0} £ ½0;1Þ: Hence, the species

goes extinct in Patch 1 while it persists in Patch 2.

Proof It is easy to see that all orbits of System (6) are uniformly bounded after one step.

Therefore, there exist positive numbers I1 and I2 such that after one step initial population

sizes in the set {ðx1; x2Þ [ ½0;1Þ £ ½0;1Þ}are mapped to the compact set {ðx1; x2Þ [

½0; I1� £ ½0; I2�}: The Jacobian of System (6) evaluated at ð0; 0Þ is

ð1 2 dÞ2 expð2R1Þ 0

d expðR1Þðð1 2 dÞ expðR1Þ þ expðR2ÞÞ expð2R2Þ

0
@

1
A:

Hence, ð0; 0Þ is unstable. To show that Ft
1ðyÞ! 0 as t!þ1: Define the function V :

Rþ £ Rþ ! Rþ by Vðy1; y2Þ ¼ y1: Next, we show that V is a Lyapunov function for

System (6). Hence, it decreases to a limit point with first coordinate zero. If y1 . 0; then

VðFðyÞÞ , ð1 2 dÞ expðr1 þ a1Þy1 and VðFðyÞÞ , VðyÞ whenever ð1 2 dÞ expðR1Þ , 1:

Therefore, for all points y ¼ ðy1; y2Þ satisfying y1 . 0 we know that VðFðyÞÞ , VðyÞ:

If ðx1; x2Þ is an v-limit point and x1 . 0; then VðFðxÞÞ , VðxÞ: However, this is impossible

for an v-limit point.
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Consequently, when ð1 2 dÞ expðR1Þ , 1; the “limiting system” of System (6) is

x2ðt þ 1Þ ¼ x2ðtÞ exp R2 1 2
x2ðtÞ

K2 þ a2ð21Þt

� �� �
: ð7Þ

To prove persistence, notice that x2ðt þ 1Þ $ x2ðtÞ expðR2ð1 2 ðx2ðtÞÞ=K2 2 a2ÞÞÞ: Thus

x2(t) is increasing if x2ðtÞ [ ½0;K2 2 a2�: Also, if ðx1ðtÞ; x2ðtÞÞ [ ½0; I1� £ ½K2 2 a2; I2�;

x2ðt þ 1Þ has a positive minimum, say m. Thus x2 gets larger than min{m;K2 2 a2}=2 and

stays larger. Hence the species persists in Patch 2 while it is extinct in Patch 1. A

Let f 0ðxÞ ¼ x expðR1ð1 2 ðx=K1 2 a1ÞÞÞ and f 1ðxÞ ¼ x expðR1ð1 2 ðx=K1 2 a1ÞÞÞ: The

positive fixed points of the Ricker maps f0 and f1 are X01 ¼ K1 þ a1 and X11 ¼ K1 2 a1;

respectively. Since hiðt þ 2; xiÞ ¼ hiðt; xiÞ and hiðt þ 1; xiÞ – hiðt; xiÞ; then { f0, f1, . . ., ft,. . .}

is a two-periodic dynamical system. When a1 ¼ 0; f0 and f1 reduce to the same classic Ricker

model. In this case, it is possible for the Patch 1 population to be on a positive equilibrium at

x11 ¼ K1 1 þ
1

R1

lnð1 2 dÞ

� �
:

Example Set the following parameter values in System (6):

a1 ¼ 0; a2 ¼ 0:01; K1 ¼ K2 ¼ 1; R1 ¼ 1:8; R2 ¼ 2:1; and d ¼ 0:01:

With our choice of parameters, {x01 ¼ 0:9944} is an asymptotically stable fixed point of

{ f 0 ¼ f 1}: For each i [ Zþ; define the two-periodic (nonautonomous) map by

Ĝiðx2Þ ¼
d

1 2 d
x11 þ x2 exp R2 1 2

x2

K2 þ a2ð21Þi

� �� �
:

In fact,

{0:56998 ! 1:43300}

is an asymptotically stable two-cycle of the two-periodic dynamical system {Ĝ0; Ĝ1}:

Consequently, as predicted by Theorem (2) and Corollary (1), System (6) has an

asymptotically stable two-cycle at

{ð0:9944; 0:56998Þ! ð0:9944; 1:43300Þ}:

To study the impact of the unidirectional dispersal rate on the two-cycle attractors, we fix

the parameters a1, a2, K1, K2, R1 ¼ 1:8 and R2 ¼ 2:1 at their current values while d is varied

between 0 and 1.

As predicted by Theorem (5), the Patch 1 population persists when d , 1 2 e21:8 while it

goes extinct when d . 1 2 e21:8 (see Figure 1). That is, Patch 1 population decreases to zero

with increasing values of the unidirectional dispersal rate. However, Patch 2 population

persists on a two-cycle attractor for all values of the dispersal rate.

In a recent paper, Franke and Yakubu provided a framework for the creation of multiple

attractors in single-species nonautonomous population models without dispersal. Autono-

mous metapopulation models are known to support multiple attractors where local popula-

tions support single attractors [16,30]. As in the autonomous Ricker equation, increasing

values of Ri in System (6) force complex bifurcations including period doubling bifurcations,

chaotic attractors and multiple attractors with complex basins of attraction [16,30].
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To illustrate multiple attractors via two coexisting two-cycle attractors we set the

following parameters values in System (6)

a1 ¼ 0; a2 ¼ 0:01; K1 ¼ K2 ¼ 1;R1 ¼ 2:2; R2 ¼ 2:1; and d ¼ 0:01

With our choice of parameters, System (6) has two coexisting two-cycle attractors at

{ð1:4853; 1:4438Þ! ð0:5055; 0:5565Þ}

and

{ð1:4853; 0:5847Þ! ð0:5055; 1:4208Þ}:

Figure 2 displays the basins of attraction of the two coexisting attractors.

6. Conclusion

This paper focuses on a generalization of unidirectional discrete-time metapopulation

models connected by dispersal. The effects of unidirectional dispersal on local dynamics in

periodically varying environments are explored via a very general nonautonomous dispersal

linked two-patch model.

Figure 1. Patch 1 versus Patch 2 populations as d varies between 0 and 1. Patch 1 population decreases to zero with
increasing values of the dispersal rate. However, Patch 2 population first increases before decreasing to its carrying
capacity, and the population persists on a two-cycle attractor for all values of the dispersal rate. On the vertical axis,
0 # x1; x2 # 2: On the horizontal axis, 0 # d # 1:
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The results of Elaydi and Sacker predict that l must be a divisor of k whenever a k-periodic

dynamical system supports a globally stable l-cycle [11,12]. Our results support this

prediction, and for unidirectional metapopulation models in periodically varying

environments, l must be a divisor of k whenever the k-periodic dynamical system supports

an l-cycle. This result is independent of the stability of the l-cycle.

Autonomous and nonautonomous unidirectional dispersal linked metapopulation models

are capable of supporting multiple attractors, where local populations are governed by

equations like the classic Ricker model that supports single attractors [16,40,41]. Also, single

species nonautonomous models support multiple attractors where the corresponding

autonomous models support single attractors [16]. Studies on the role of periodically varying

environments in generating multiple attractors would be welcome. These results may support

the need to maintain dispersal corridors in periodically fluctuating environments. The use of

dispersal corridors as a mechanism to increase the number of attractors may increase the

likelihood of species survival in periodically varying environments [2,41].

The interactions via dispersal of various forms of local patch dynamics has not only led to

the generation of a dynamical landscape capable of supporting multiple attractors but also

has aided our understanding of the role that initial population sizes play in the ultimate fate

(life-history) of a metapopulation. The overall fate of a metapopulation becomes less

predictable as the complexity of the local dynamics increases. That is, the complex structure

of the basins of attraction and their basin boundaries increases as the complexity of the local

dynamics increases to the point that it may be impossible to determine, with any degree of

certainty, the fate of such metapopulations [19,27,41].
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