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Using a signature function to determine resonant
and attenuant 2-cycles in the Smith-Slatkin
population model
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We study the responses of discretely reproducing populations to periodic fluctuations in three parameters: the
carrying capacity and two demographic characteristics of the species. We prove that small 2-periodic
fluctuations of the three parameters generate 2-cyclic oscillations of the population. We develop a signature
function for predicting the responses of populations to 2-periodic fluctuations. Our signature function is the
sign of a weighted sum of the relative strengths of the oscillations of the three parameters. Periodic
environments are deleterious for populations when the signature function is negative, while positive signature
functions signal favorable environments. We compute the signature function for the Smith—Slatkin model,
and use it to determine regions in parameter space that are either favorable or detrimental to the species.

Keywords: Attenuant; Periodic forcing; Resonant; Signature function; Smith—Slatkin model

1. Introduction

Franke and Yakubu, in a recent paper, used classical parametric single species discrete-time
population models to study the responses of populations to periodic fluctuations in two
parameters, the carrying capacity and the demographic characteristic of the population (growth
rate) [19]. In constant environments, many classical discrete-time single species population
models have three parameters, the carrying capacity and two demographic characteristics of the
species [1-25,27-43]. Examples of such 3-parameter single species models include the Smith—
Slatkin, Hassell, Bobwhite quail and Maynard-Smith models [1,3-5,19-21,33-36,43]. In this
paper, we focus on the effects of 2-periodic forcing of the carrying capacity and two
demographic characteristics on populations governed by discrete-time models. Many of our
arguments are similar to those in the two parameter paper [19] but are more complicated because
of the third parameter.

Periodic environments are known to be deleterious for populations governed by the logistic
differential or difference equations [6,39]. That is, the average of the resulting oscillations in the
periodic environment is less than the average of the carrying capacities in corresponding
constant environments (attenuance). Cushing and Henson obtained similar results for 2-periodic
monotone models [6]. Elaydi and Sacker [9—12], Franke and Yakubu [15—-19], Kocic [27], and
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Kon [29,30] have since extended these results to include p-periodic Beverton—Holt
population models with or without age—structure, where p > 2. These results are known to
be model-dependent [6]. However, in almost all the theoretical studies, with only a few
exceptions (see [9-12,19]), only two parameters are periodically-forced: the carrying
capacity of the species and one demographic characteristic of the species.

Unimodal maps under period-2 forcing in two parameters routinely have up to three
coexisting 2-cycles (see [31,38] for examples). We use the Smith—Slatkin model to illustrate
multiple 2-cycles in maps under period-2 forcing in three parameters. Also, we construct a
signature function, R, for determining whether the average total biomass is suppressed via
attenuant stable 2-cycles or enhanced via resonant stable 2-cycles. As in Ref. [19], R is the
sign of a weighted sum of the relative strengths of the oscillations of carrying capacity and
the two demographic characteristics of the species. We use the 3-parameter Smith—Slatkin
model to illustrate that, in the presence of periodic forcing, an inverse relationship between
the carrying capacity and one of the demographic characteristics of the species can lead to a
decrease in the population biomass (attenuance). However, large values of the carrying
capacity and one of the demographic characteristics of the species can lead to an increase in
the population biomass (resonance). Consequently, a change in relative strengths of
oscillations of carrying capacity and at least one of the demographic characteristics of a
species is capable of shifting population dynamics from attenuant to resonant cycles and vice
versa. It is know that this dramatic shift is not possible in population models with a single
fluctuating parameter [19,22,23].

Section 2 introduces our framework for studying the impact of environmental fluctuations
on discrete-time population models with three fluctuating parameters. In Section 3, we prove
that small 2-periodic perturbations of the carrying capacity and the demographic
characteristics of the unforced system produce 2-cycle populations. The signature function,
R, for predicting resonant and attenuant 2-cycles that perturb from the equilibrium given by
the carrying capacity of the unforced system is introduced in Section 4. R for the Smith—
Slatkin model, and regions in parameter space for the support of attenuant or resonant 2-
cycles that perturb from the equilibrium given by the carrying capacity are given in Section 5.
In Sections 3—5, we assume that a 2-cycle must, for small forcing, be close to the carrying
capacity. However, the carrying capacity does not have to be the only source of 2-cycles.

To compute R, for the other coexisting 2-cycles, in Sections 6 and 7 we assume that two 2-
cycles perturb from (the two different phases of) a 2-cycle in the unforced model. In Section
6, we prove that small 2-periodic perturbations of a 2-cycle of the unforced system produce
two 2-cycle populations. Signature functions, R4, for 2-species Kolmogorov type discrete-
time population models with 2-periodic forcing of 2-cycles are introduced in Section 7. Ry
for the Smith—Slatkin model, and regions in parameter space for the support of attenuant or
resonant coexisting 2-cycles in the model are also given in Section 7. The implications of our
results are discussed in Section 8.

2. Population models with three parameters

Theoretical ecology literature is filled with single species discrete-time population models
that have three parameters. Table 1 is a list of specific classical examples of population
models with three parameters.
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Table 1. Examples of three-parameter population models.

Model fy mn(X) = Parameters giving stable carrying capacity, k > 0 References

kil 0<n<2o0r0<m<}(2n) Smith—Slatkin (1950) [3-5,19-21]
m 0< n(l - m‘,/) <2 Hassell (1954) [3-5,19-21]
% 1 < mnm-—1)<2m Maynard-Smith (1974) [3-5,19-21]

In Ref. [19], Franke and Yakubu studied the combined effects of 2-periodic forcing of two
model parameters, the carrying capacity and a demographic characteristic of the species. To
study the impact of 2-periodic forcing of three model parameters, we consider population
models of the general form

x(t + 1) = x()g(k, m, n, x(1)), ey

where x(7) is the population size at generation #, m and n are demographic characteristics
of the species and k is the carrying capacity, i.e. g(k,m,n,k) = 1. The per capita
growth rate g € C3(R; X R, X Ry X R, Ry), where R, = [0, ) and R, = (0, 0). To
simplify the notation we will let P(x) = (k, m, n, x).

For each triple of positive constants k, m and n, define

Skmn R, — R,
by
Srman(x) = xg(P(x)).

The set of iterates of fy,., is equivalent to the set of density sequences generated by
Model (1).

Table 1 lists the classic Smith—Slatkin, Hassell and Maynard-Smith models [3—-5,19-21]
that we denote as Models I, IT and III, respectively. In Model I, the carrying capacity (k > 0)
is an attracting positive fixed point whenever either 0 < n <2 or m < (1/k)(2/n — )/,
However, in Models II and III, the carrying capacity is an attracting positive fixed point when
0 < n(l— (1/(m)1/")) <2 and 1 < m,n(m — 1) < 2m, respectively (see column 2 of
table 1 for stability conditions).

When the carrying capacity, &, as well as both of the demographic characteristics, m and n,
are 2-periodically forced, then equation (1) becomes

x(t + 1) = x(0)gk(1 + a(= 1)), m(1 + B(=1)), n(1 + (= D), x(1)), 2

where the relative strengths of the perturbations «, 8,y € (—1,1). Unimodal maps with
period-2 forcing routinely have up to three coexisting 2-cycles. For two-parameter discrete-
time population models, these results were obtained by Franke—Yakubu [19], Kot—Schaffer
[31] and Rodriguez [38]. In Sections 5 and 7, we use the Smith—Slatkin model, Model I in
table 1, to illustrate specific examples of equation (2).

When

x1 = xog(k(1 +a), m(1 + B),n(1 4 ), x0) and

xo = x18k(1 — @), m(1 — B),n(1 — ), x1),
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then {xp,x;} is a 2-cycle for equation (2). Depending on model parameters, 2-periodic
dynamical systems have globally stable 2-cycles [15—19]. In the next section, we obtain
conditions for the global stability of the 2-cycle of equation (2) under the assumption that the
2-cycle must, for small forcing, be close to the carrying capacity. In general, the carrying
capacity does not have to be the only source of 2-cycles. For example, in the logistic and
Ricker maps with two parameters, the other two 2-cycles perturb from the 2-cycle of the
unforced system.

As in Ref. [19], when a 2-cycle perturbs from the equilibrium given by the carrying
capacity k, we use the following definition to compare the average of the 2-cycle with the
carrying capacity k.

DEFINITION 1. A 2-cycle of equation (2) is attenuant (resonant) if its average value is less
(greater) than the carrying capacity k [6].

Next, we introduce similar definitions for attenuant and resonance 2-cycles that are
perturbations of 2-cycles. When a 2-cycle perturbs from the 2-cycle of the unforced model,
{X, ¥}, we use the following definition from Ref. [19] to compare the average of the 2-cycle
with the average of {X,¥}.

DEFINITION 2. A 2-cycle of equation (2) is attenuant (resonant) if its average value is less
(greater) than (X +7/2).

When two 2-cycles perturb from the 2-cycle of the unforced model, {x,7}, we use the
following definition to compare the average of the two 2-cycles together with the average of
{x, 5}

DEFINITION 3. Let {Xg, X1} and {Jo, 1} denote two coexisting 2-cycles of equation (2) that
perturb from {X,y}. Together, {Xo,X1} and {¥o,y1}, are attenuant (resonant) if their average
value
Xo + Yo + X1 + Y1
4
is less (greater) than (X + y/2).

These definitions of attenuant and resonant cycles refer to a decrease and an increase in

average total population sizes, respectively [19].

3. 2-Cycle perturbations from unforced carrying capacity: 2-cycle attractor

It is known that small 2-periodic perturbations of a single parameter can generate population
cycles of period 2 in population models with either one or two parameters [14,19,23]. In this
section, we illustrate that small 2-periodic perturbations of the carrying capacity, k, and the
two demographic characteristics of the population governed by equation (2), m and n,
produce 2-cycle populations, {xp,x;} with xo and x; near k. This 2-cycle reduces to the
carrying capacity in the absence of period-2 forcing in the parameters. To simplify the
notation, throughout the paper we let

P(k)=(k7m7n7k)) P(O)‘x)=(070707k7m7n7x)
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and

P(“?'x) = (a) B? 77 k’ m7 n7x)'

THEOREM 4. Suppose

ad Gl 2
8 #0 and 8 #F ——

9| pay X[ pay k'
Then for all sufficiently small |a|, |B| and |y|, equation (2) has a 2-cycle population
{xo = x0(a, B,7), x1 =x1(a, B, V)},
where

lim  xp(a = Iim x(« =k
(@,.9)—(000) ()( 7B7 Y) (@B.y)—(0.0.0) 1( 7B7 'Y)

and xo(a, B, ), xi(a, B, y) are C3 with respect to a, B and . If the carrying capacity, k, is
locally asymptotically stable (unstable), then the 2-cycle is locally asymptotically stable
(unstable).

Proof. Let

F(P(a, X)) = fir1—a)m(1—B)n(1—7) S k(140 m(1+B)n(1-47)(X)-

To prove this result, we look for fixed points of the composition map

F(P(e, x)) = f(k(1 — ), m(1 = B),n(1 = ), f(k(1 + @), m(1 + B), n(1 + ), x))

where k=k(14+a), m=m(1+pB), i=nl+7y), k=k(1 —a), m=m1 — B) and
i =n(l — 7).
Note that F(P(0,x)) = k and

2
oF a
il S .
0% | po.) 0 pry
Since
d J 2 oF
% 20 and ] -2, T #1
x| peey x| pgey k™ axipon

These partial derivative conditions on g are equivalent to f ) being hyperbolic at k. The
theorem follows from a direct application of the Implicit Function Theorem to F. (]

The carrying capacity, k, is a hyperbolic fixed point of f ,, » if |(df kmp /dx)(k)| # 1. When
k is a hyperbolic fixed point of fi ., then (3g/0x)|pu) # 0, (0g/9x)|pxy # —(2/k) and the
following result is immediate.
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COROLLARY 5. Ifthe carrying capacity is a hyperbolic fixed point of equation (1), then for
all sufficiently small |al,|B| and |v|, equation (2) has a 2-cycle population

{xO = )C()(Ol, B7 ’Y)rxl = _X](Ol, B7 ’y)}a
where

li xo(a, B, y)= i

im m  x(«a )=k
(a,B,7)—(0,0,0) (a,8,9)—(0,0,0) By

and xo(a, B, ), x1(a, B, y) are C3 with respect to a, B and 7. If the carrying capacity, k, is
locally asymptotically stable (unstable), then the 2-cycle is locally asymptotically stable
(unstable).

By Corollary (5), table 1 gives parameter regimes for the occurrence of a locally stable 2-
cycle in three specific three-parameter population models under small period-2 perturbations
of the carrying capacity and the two demographic characteristics of the species. Since these
population models can have up to 3 coexisting 2-cycles (two stable and one unstable), these
are not the only such parameter regimes.

4. 2-Cycle perturbation from unforced carrying capacity: signature function

In this section, we show that small perturbations of the carrying capacities and the two
demographic characteristics of the species generate both attenuant and resonant 2-cycles,
depending on the relative strengths of the fluctuations. As in the previous section, we assume
that the 2-cycle must, for small forcing, be close to the carrying capacity. For this 2-cycle, we
develop a signature function, Ry, for determining whether the average total biomass is
suppressed via attenuance or enhanced via resonance.

When the carrying capacity, k, is a hyperbolic fixed point of f%,,, then Corollary (5)
guarantees that the 2-cycle solution of equation (2) can be expanded in terms of «, B and 7y as
follows:

xo(a, B, y) = k + Zo(a, B, ¥) + xor3y + X022 8% + X023 BY + X033¥* + Ro(a, B, 7)) (3)
where
Xo(a, B, ¥) = Xo1@ + X2 B + X037y + Xon1@” + Xo1203,

Xo1, X02, X03, X011, X012, X013, X022, X023, and xp33 are the coefficients and lim, g y—0,0,0)
(Ro(e, B, y)/a? + B% + y?) = 0 The expansion of the second point in the 2-cycle in terms of
a, B and vy is as follows:

xi(a, B,y) = k+3i(a, B,y) + xizay + xinB% + x138y + x13:37* + Ri(a, B,7) (4
where
f1(a, B, y) = xia+ xpB+ xi3y + xi1a’ + xipaf,

X11,X12,X13, X111, X112, X113, X122, X123 and x;33 are the coefficients and

R
im  R@By
(a.B,7)—(0,0,0) @2 + B2 + 2
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We will use the following two auxiliary lemmas concerning the coefficients in equations
(3) and (4) to establish the following expression for the average of the 2-cycle:

xo(a, B, y) + xi(e, B,y) _ k+ (xo11 +x111) o2 4 (xo12 + X112) af + (X013 + X113) “
2 2 2 2
R()(O(, B7 7) + Rl(a7 B7 'Y)
+ > .

LeEmMmA 6. In equations (3) and (4),

X02 = X03 = X12 = X13 = X022 = X023 = X033 = X122 = X123 = X133 = 0.

Proof. When a = 0,
x0(0, B, Y) = k + x02 B + X03Y + X022 8% + X023 8Y + %0337 + Ro(0, B,y) and

x1(0, B, ¥) = k +x12B + x137 + x128% + X123 By + x133¥> + R1(0, B, ¥).
However, the fixed point of f% ,u(1+p)n(1+y) is k. Thus,

Sem=pa—ypemi+pna+ypk) =k and  x0(0, B, y) = x1(0, B, y) = k.
Therefore,
X2 = X03 = X12 = X13 = X022 = X023 = X033 = X122 = X123 = X133 = 0.
O

By this result, the coefficients of the relative strength 3, vy, 82 and v in equations (3) and
(4) are zero. The next result establishes that the sum of the coefficients of the relative strength
a in equations (3) and (4) is zero.

LemmA 7. In equations (3) and (4), if

0g

# 0,
0x P(k)

then

xo1 +x11 = 0.

Proof. Since
x1(@, B, Y) = Frii+ami+pat+yXo(a, B, ¥) = xo(a, B, Y)g(k, i, t, xo(a, B, ),
where k = k(1 4+ a),/m =m(1 + B) and /i = n(1 + 7).
Therefore,

_ a[X()(O(, B’ ’Y)g(]%a ﬁl? ﬁvx()(aa Ba ’Y))]

da Pla)=P(0.)

X11
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Similarly,
xo(a, B,Y) = fr-aym1-pyni—y&Ei(a, B, )
= xl(aa Bv V)g(i{v ﬁ’l, ﬁaxl(av Bv 7))7
where k = k(1 — a),m=m(l — B) and 7= n(l — 7).
Therefore,
Xo1 = (")[)C](O[, Bv ’)’)g(i{, ﬁ’l, f_l,X](Oé, B7 ’y))]
oa P, )=P(0.k)
Hence,
J d J d
X11 = Xo1 1+k£ +k2£ and X01 = X11 1+k£ —kzﬁ .
ox Pl ok Pl ox Pl ok Pl

Adding produces

J
(xo1 + X11)k—g
0x

=0.
P(k)

Since k # 0 and (9g/dg)|pu) # O,

Xo1 +x11 = 0.

O
Let
signwja +wrB+wsy) if a>0
Ry = 0 it a=0,
—sign(wja +waB+wsy) if a<O
where
_ (o1 +x111) _ (xo12 +x112) _ (xo13 + x113)
W=, W= and Wy =————.

R is the sign of a weighted sum of the relative strengths of the oscillations of the carrying
capacity and the two demographic characteristics of the species. A compact expression for
Rd is

Raq = sign(a(wia + waff + w3 ).

In the following result, we show that R, determines when the 2-cycle is either attenuant or
resonant.

THEOREM 8.  If the carrying capacity is a hyperbolic fixed point of equation (1), then for all
sufficiently small |a|, | Bl and |y|, equation (2) has an attenuant (a resonant) 2-cycle if Ry is
negative (positive).
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Proof. Lemmas (6) and (7) establish that the average of the 2-cycle predicted in Corollary (5)
satisfies the equation

Xo(e, B, y) +x1(e, B, y) _ k4 (xo11 +x111)a2 n (X012 + X112) o
2 2 2
(X013 + x113) Ro(a, B, y) + Ri(a, B, )
+ > ay—+ >

RO(a7 Ba ’Y) + R](CY, B? '}’)
> .

=k+ awia+wyB+wsy) +

Since,

im RO(av B7 7) — lim Rl(aa Bv 7) —
(@By—000 a®+ B2+ y2  (@By—000 a?+ B2+ y?

b

the sign of

)C()(a, ﬁv 7) + X1 (C\’., Ba V) _

k
2

is the same as the sign of a(wa + w, 8 + w3y) which is Ry, for all sufficiently small |a, | ]
and |yl and Ry # 0. If (xo(e, B, y) + x1(e, B, ¥)/2) — k > 0, then the 2-cycle is resonant and
if (xo(a, B, y) + x1(ex, B,y)/2) — k < 0, then the 2-cycle is attenuant. ]

When the demographic characteristics are fluctuating but the carrying capacity is constant
(that is, « = 0,8 # 0 and y # 0), then the 2-cycle degenerates into a fixed point at the
carrying capacity. However, when the demographic characteristics are constant but the
carrying capacity is fluctuating (o # 0, 8 = 0 and -y = 0) Theorem (8) and the definition of
R, give the following result.

COROLLARY 9.  Ifthe carrying capacity is a hyperbolic fixed point of equation (1) and only
the carrying capacity is fluctuating (8 = 0 and y = 0), then for all sufficiently small |,

Ra = sign(wy)
and equation (2) has an attenuant (a resonant) 2-cycle if wy is negative (positive).

Population models with 3 parameters which are 2-periodically forced are capable of
experiencing both resonance and attenuance. We formalize this in the following result.

COROLLARY 10. Ifthe carrying capacity is a hyperbolic fixed point of equation (1), then for
all sufficiently small |, |B| and |y, equation (2) has an attenuant (a resonant) 2-cycle if
a >0, wy +ws >0 and max{B, y} < —(w;/wy +w3)a (min{B, y} > —(w;/ws + w3z)a).
Also, equation (2) has an attenuant (a resonant) 2-cycle if >0, wy, +w3 <0 and
min{B, y} > —(wi/wy +w3)a (max{B,y} < —(wi/wy +w3)a). Consequently, if wy+
w3 # 0 the model has both attenuant and resonant cycles.

Proof. If wy 4+ w3 >0, >0 and max{B,y} < —(wi/wy +w3)a, then w,B+ w3y
< —wia, wia+woB+wsy<0,a(wa+w,B+wsy) <0 and R, is negative. Thus,
Theorem (8) gives that the 2-cycle is attenuant. Similar arguments establish the rest of
the proof. ]
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5. 2-Cycle perturbation from unforced carrying capacity: Smith-Slatkin model

In this section, we use our theorems to study the impact of the combined effects of a
fluctuating carry capacity and demographic characteristics on the average total biomass of
populations that are governed by the Smith—Slatkin model (table 1). Specifically, we
compute R, and use it to investigate parameter regimes of attenuance and resonance of the 2-
cycle that perturbs from the equilibrium given by the carrying capacity.

When the carrying capacity and both of the demographic characteristics are 2-periodically
forced, then the classic Smith—Slatkin model becomes

1+ (m(1 + (= 1) B)k(1 + (= 1) @)y’ +=D'

1) =
x(t+ 1) = x(1) 1+ (1 + (= 1Y Byx(e)y @+

®

From table 1, in constant environment, the carrying capacity, &, is asymptotically stable when
n<2orm<(1/k)2/n— 2)!/7 In either of these cases, Corollary (5) predicts a stable 2-
cycle in Model (5).

Let  A=(l—n+4(mk)" — 4(mk)"n+4(mk)*" — (mk)*'n+ (mk)*", B = (mk)"n*> —
6(mk)>"'n — 4(mk)>'n + 6(mk)>" + 2(mk)*"n? + (mk)*n? and C = (mk)>" + 2(mk)"nIn(mk)+
(mk)*"nIn(mk) + nIn(mk). To determine the effects of periodicity on the 2-cycle, we obtain
that Ry = sign(a(w;a + wy 8+ wsy)), where

—4k(A + B)
w1 = n\2 n n,\2"?
(1 + (mkY"Y2(—=2 — 2(mk)" + (mk)'n)
_ —4kn
W T k) + (mky'n
kG mky £ 3mk)” + 14+ C)
3

(1 + (mk))2(=2 — 2(mk)" + (mk)'n)’

Whenn =1,
4mk?
Wy = — 2
(2 + mk)
4k
Mk
4k(mk + 1 4 In(mk))

W =

’ 2+ mk

Ifmk+1 + In(mk) > 0, > 0,8 < 0and y < 0, then R; < 0 and the 2-cycle is attenuant.
That is, a periodic environment is detrimental to the species when the fluctuations in the
carrying capacity are out of phase with the fluctuations in the demographic characteristics of
the species. Since (w1 /wy) = —(mk/2 + mk),if B > —(w1/wy)a = (mk/2 + mk)a and all
the three fluctuations are in phase, then R, > 0 and the 2-cycle is resonant (Figure 1).
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Figure 1. Regions in the km-plane where w, w, and wj are positive and negative for the 2-periodic Smith—Slatkin
model, where n = 1.

When n = 3,

4kRm3k - 1)

R R
%
HE e —
4k(m3k> + 1 + 31Inmk)
e m3k? — 2

If (1/3/3) < mk < ~/3, then w; <0, w, >0 and w3 > 0 (Figure 2). If, in addition, the
fluctuations in the carrying capacity are out of phase with the fluctuations in the demographic
characteristics of the species, then R; < 0 and the 2-cycle is attenuant. That is, in the
presence of periodic forcing, an inverse relationship between the carrying capacity and one
of the demographic characteristics of the species can lead to a decrease in the population
biomass. If mk > /3, then w; >0, w, < 0 and w3 < 0 (Figure 2). If, in addition, the
fluctuations in the carrying capacity are out of phase with the fluctuations in the demographic
characteristics of the species, then R; > 0 and the 2-cycle is resonant. That is, in the
presence of periodic forcing, large values of the carrying capacity and one of the
demographic characteristics of the species can lead to an increase in the population biomass.

Asin the case when n = 3, any time n > 2 there are two hyperbolas, mk = ¢; and mk = ¢,
with ¢; < ¢, in the first quadrant of the m,k-plane such that w; > 0, w, < 0 and w3 <0
above the higher curve and w; > 0, w, > 0 and w3 < 0 below the lower curve. This shows
that if n > 2 in the Smith—Slatkin model, out of phase forcing of the carrying capacity and
the demographic characteristics leads to an increase in the average population biomass
whenever km is large. However, if the forcing is in phase and the forcing of the demographic
characteristics are strong enough then the average population biomass decreases. In the
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Figure 2. Regions in the km-plane where wy, w, and wj are positive and negative for the 2-periodic Smith—Slatkin
model, where n = 3.

region where km is small, in phase fluctuations of k& and n together with out of phase
fluctuations in m lead to an increase in the average total population biomass.

6. 2-Cycle perturbation from unforced 2-cycle: two coexisting 2-cycles

The classic Smith—Slatkin model, a unimodal map, is capable of undergoing period-
doubling bifurcations route to chaos. In this section, we illustrate that small 2-periodic
perturbations of a 2-cycle of equation (1), denoted by {X,y}, produce two 2-cycle
populations, {Xy,x;} and {¥9,y1} with Xy, y; near X and X, yo near y. These two 2-cycles
reduce to the 2-cycle {x,¥} in the absence of period-2 forcing in the parameters.

Recall that in the absence of period-2 forcing our general model, equation (1), is

Jrema(x) = f(P(x)) = xg(P(x)).

Unlike the previous sections, we now assume throughout that fy ,, ,(x) has a 2-cycle, {X, y}.
Next, we proceed as in Corollary 5 and use the Implicit Function Theorem to show that, for
small forcing, two coexisting 2-cycles perturb from {x,¥}. In this result,

F(P(at, X)) = fr(1—a)m(1—B)n(1— ) k(1+a)m(1+B)n(14)(X)-

THEOREM 11.  Assume fy ., has a hyperbolic 2-cycle, {X,y}. Then for all sufficiently small
|a| |8l and ||, equation (2) has a pair of 2-cycle populations

{XO = )_C()(CY, Ba 7)521 = Xl(Ol, B7 7)}
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and
{)_70 =)_)0(a7B> ﬂ}’)u)_)l =)71(a7 B7 '}’)}
where
a b b
(A 000 By ) = s Bo00 1 (& BN = (@ 0ot (@ B Y =

lim =
(@,By)— (OOO)yO( 7B? Y) ¥y,

a}’ldX()(CL B7 ’)/),)_Cl(a, Ba Y)) )_JQ(C(, Bv 7)75’1(“7 B7 'Y) are C3 with respect to a, B and Y- Ifth@ 2-
cycle, {x,y}, is locally asymptotically stable (unstable), then the two 2-cycles are locally
asymptotically stable (unstable).

Proof.
F(P(a,x)) = xg(k, i, i, x)g(k, i, i, xg(k, i, 7, x)),

where k= k1+a), m=m1+Pp), ai=nl+7vy), k=k(l— «a), =m(l — B) and
7i = n(1 — 7). Thus, F(P(0,X)) = x and F(P(0,y)) = y. The 2-cycle, {Xx, } is a hyperbolic
fixed point of f,%’m’n if

of? 9 9
’fgﬁm,n()_c)‘ ‘fkmn() fkmn(y)‘#l
X
Hence,
E — aflc,m,n . afk,m,n aF =1
Xlpoy  0x g X g o P(0.5)

As in the proof of Theorem 4 and Corollary 5, we apply the Implicit Function Theorem at
P(0,x) and P(0,¥) to get

Xo :)_C()(Ol, 37 ’Y) 5)0 :S)O(a7 Bv y)

as two 3-parameters families of fixed points of F/
Hence, Xy(«, B, y) and yo(a, B, y) each gives us a 2-cycle for the 2-periodic dynamical
system

(1= @)1= By a1 =) f k(1 +a)n(14+8) (149 (X) } -

Let

Xi1(a, B, Y) = fri+a a1+ ni+yXola, B, y)
and

yi(a, B, ) = fra-wn(1—pyna—-yFola, B, ¥)).
Then

Xo(a, B, Y) = fra-an(i-pa-yXi(a, B,y)) and

Yola, B, V) = fra+ayn1+pai+y(Fi(a, B, ).
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7. 2-Cycle perturbation from unforced 2-cycle: signature function

In this section, we obtain a signature function, R4, under the assumption that a 2-cycle must,
for small forcing, be close to the 2-cycle {x,y} of equation (1). When the 2-cycle {X, ¥} is
hyperbolic, Theorem (11) guarantees the four three-parameter families,

XO(a7 Ba 7)7)_6](0‘7B7 ’Y)ayo(av B7 ’Y) and yl(a7 .Ba y)a

where

X1(a, B, ¥) = fra1+ayn(i+p)nti+y Fo(e, B, ¥))
and

Yi(e, B, Y) = fra+a)n(1+8).a0+yFol(e, B, ¥)).
Note that

Xo(a, B, Y) = fra-ani-pni-y&Ei(a, B,y) and

Yo(a, B, Y) = fra-ayn(i-pyn1—-yF1(a, B, ).

Let the linear expansion of these four 3-parameter families about («, 8, y) = (0,0, 0) be
Xo(a, B,y) = X+ xo1a + x2B +x03y  Xi(a, B,y) =y +xna+x2B+x13y

Vola, B, y) = ¥y +yna+ynB+yny ¥ila,B,y) =X+yna+ynB+ysy.

Next, we state the formulas for the coefficients.

oF ¥ Al
o a_a|P(0,5c) L ke P<y>+ax|P@> (kak|P<5c>)
" Ha Bl
x| P(0,%) axlPG) oxlP()
oF — L *( o )
= Bl po.x _ mam|P(y>+ax|P(y) m8m|P(5c)
02 a£| 1 ﬂ’ *ﬁ| -1 ’
ax 1 P(0,%) ax|PF) axlP@)
aF _ o af o
ey ”an’P(y)+ax’P(y)*(”an’P(x))
T R R
x| P(0.%) axlpG) oxlPG)
and
oF ¥ o of
_ @’ POy kak‘P(;c)+ax P(x)*(kak|1:(y))
Yo1 = i‘ 1 - ait| *‘X 1 )
ax | P(0,5) axIP@) x| P(x)
oF _ . 0f of A
. Blpoy _ Mm P(x)+&|P<x)*(mam’P@))
T My BBt
d =1 _ _—1
x| P(0.5) axlp@)  axlP)
oF i af o
ey nan|P()‘c)+ax|P()‘c)*(nan|P@))
YT TaE AR AR '
ax | P0.y) ax1PF) oxlPE)
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To get the other 6 coefficients, we let F(a, B, v, k,m,n,x) = F(—a, —B, —vy, k,m,n, x).
Then

F(O[, B7 y,k,m,n,)"cl(a,,B, Y)):xl(aaﬁ7 Y) and

F(a7 Ba Y kvmanayl(av B7 ’}/)) = )_71(CY7 Bv '}’)

Consequently,
i —_, of of
[ @|p(07}—,) _ kak’P()?)+ax|P(y)*(kak|P(5<))
S R T
ax | P(0.3) axl P oxl PG)
oF - LA LU
__ %Bleoy mam|p(x)+ax|p(x)*(mam|P@))
2= TN a WA ’
ax | P(0.5) axl P oxl P)
oF i of
[ Tpoy nan|P()'c)+6x|P()‘c)*<n8n|P(5z})
S R
ax 1 P(0,y) axIP(y) 0xIP(x)
and
oF _ of of
_ @|P(0,}?) _ kfik P@)—i_ax’P@)*(kak‘P(}?))
yii = £| 1 = ﬂ‘ i 1 )
ax | P(0.%) axl P oxl P®)
or | g ar
L mam|P@)+ax|P@)*(mam’P()‘c))
yi2 = M| -1 ﬁ} *M’ —1 ’
ax | P(0.%) axl P oxl P)
9F —n of o
ey ”an|P(y)+ax{P(y)*(”fm‘P(x))
Y3 = oL -1 "’l| *f’l| —1 ‘
ax | P0.%) axlP) oxl PG)
Let

Ra(X) = wira+wyB+wsy and Ry(y) = wiya + wy B+ wsyy,
where
Wiy = Xoj + X1
and
Wiy = Yoi T Y1i
for each i € {1,2,3}. As in our previous signature function, when the two 2-cycles perturb
from the 2-cycle in the unforced model, the signature function R, is a weighted sum of the

relative strengths of the oscillations of the carrying capacity and the two demographic
characteristic of the species.

LemMa 12, Assume fymmq has a hyperbolic 2-cycle, {X,y}. Then for all sufficiently small
lal, |Bl and |y, equation (2) has a pair of 2-cycle populations

{)_CO = )_CO(av 67 ')’)7 X = )_C](Ol, B7 ’)’)}
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and
{yo = yo(e, B,y), 31 = i(a, B, Y},
where R4(X) + Ry() = 0.
Proof. By Theorem 11, the two coexisting 2-cycles exist. Next, we proceed to show that

Ra(x) + Ra(y) = 0.
Note that,

_of aof of of of _ o
kﬁ’p@)"‘&‘p@)*(kﬁ‘p@) _ kﬁ|1ﬂ(fc)+$|ﬁ(x)*( kﬁ‘P(y))

Xo1 +x11 +Yyor +yn = —

i‘ *ﬁ‘ -1 ﬁ| *i{ -1
axIP(y) 0xIP(x) axIP(y) 0xIP(x)
— f of of of — 1
B kak|P()'c)+6x P® (kak|P(y)) _ kak|P(y)+ax|P(y)*< kak’P(x))
ﬂ’ *%| -1 f’l| *£| -1
axlpe) axlP@) axlp@) Taxlp@)

=0.

Slmllarly Xo2 + X12 + Yo2 + YVi2 = 0 and Xo3 + X13 + Yo3 +y]3 =0. Hence,
Ra(X) + Ra(3) = 0. O

Note that, R4(X) + R4(y) = 0 implies w;, = —w;, for each i € {1,2,3}. The next result

shows that’ typlcauy’ one of {)_C()(Ol, Ba 7), X (a7 B7 ’Y)} or {)_’O(Ch Ba 7)»5’1(01, Ba ’Y)} is attenuant
while the other resonant.

Lemma 13, If xo1 +x11 # 0, x02 +x12 # 0, and xo3 + x13 # 0, then for each fixed line
through the origin in («, B, y) space not on the plane R (%) = (xo1 + x11)a + (xo2 + x12)8 +
(x03 +x13)Yy=0 there is a neighborhood of (0,0,0) such that on one side

{Xo(a, B, v), X1(a, B, )} and {jo(a,B, ), y1(a,B,y)} are respectively attenuant and
resonant and on the other side they are respectively resonant and attenuant.

Proof. To investigate the resonance or attenuance of {Xo(«, 3, y),x1(«, B, y)} we need to
look at Xo(a, B,y) + X1(a, B,y) — (x + ) = Ry(X)+ higher order terms. Approaching the
origin from one side along a fixed line through the origin in («, 3, ) space guarantees that the
sign of R4(X) does not change and that it eventually dominates the higher order terms. The
sign of R4(¥) changes as we move to the other side of the origin. Thus, if R4(X) > 0 on one
side of the origin, {Xo(c, B, y), X1(e, B, y)} is resonant on this side and attenuant on the other
side. By the last lemma, R;(X) = —R4(y) and hence {yo(«, B, y),y1(a, B, 7y)} will be
attenuant on the side where {Xo(a, B, ), X1(«, B, y)} is resonant and will be resonant on the
side where {Xo(e, B, v),X1(a, B,y)} is attenuant. O

Example 14. 1In the Smith—Slatkin Model with periodic forcing, equation (5), set the
following parameter values.

a=B=vy=0, k=2,m=0.7 and n=3.
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Then there is an attracting 2-cycle at {1.2180,2.8153}. Calculating derivatives at these
points we obtain

Wiy = Xo1 +x11 = —9.407036455 + 9.407036504 = 4.9 X 108
Wor = X2 + X120 = —2.068233172 + 3.665506391 = 1.5973

w3y = x03 +x13 = —0.750678311 + 2.854772692 = 2.1041.

By the last lemma, a 2-periodic force applied to this system, usually leads to the emergence
of two 2-cycles, where one of them is attenuant and the other is resonant.

Another interesting question is to compare the average of all four points on the two 2-
cycles with the average of X and y. Since R;(X) + R4(y) = 0, the answer to this question
comes from a second order form in («, 3, y). Let

Ra(%, ) = wiia® + wpaP + wizay + wn B2 + wi By + wiy?,

where
w1 = Xo11 + X111 + Yo + Yini
wi2 = Xo12 + X112 + Yoz + Y112
w13 = X013 + X113 + yoi13 + Y113
Woo = X2 + X122 + Yoo + Y12
Wa3 = X3 + X123 + Y23 + V123

w3z = X033 + X133 + Y033 + Y133-

It is possible for R,(X,y) to be positive everywhere except at the origin. For example,
Ra(x,¥) > 0 except at the origin whenever wyj, wy, w33 > 0 and wip = wiz = w3 = 0. In
this case, the four points together generate resonance. It is also possible for R,(%,¥) to be
negative everywhere except at the origin. For example, R,(X,y) < 0 except at the origin
whenever wyy, way, w33 < 0 and wi, = wi3 = wp3 = 0. In this case, the four points together
generate attenuance.

In (e, B, y) — space, the sign of R4(X, y) is constant on any ray starting at the origin. Thus,
if R4(x,y) > 0 for some (e, B, y), the four points are resonant for some small values of
(a, B, 7y). For other rays starting at the origin, R (%, ) can be negative. Thus, the system can
support both resonant and attenuant perturbations.

Next, we perturb the previous example and obtain two coexisting stable 2-cycles where
one is attenuant and the other is resonant. In this example, the four points together are
resonant.

Example 15. In Example 14, fix all parameters at their current values and set
a=fB=vy=0.01.

As predicted by Theorem 11, the system has two coexisting 2-cycles, a resonant 2-cycle
{1.115945,2.958663} and an attenuant 2-cycle {1.391256,2.60988}. The average of the
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four points is 2.0189 and the average of the 2-cycle of the unperturbed system is 2.0166.
Hence, together the four points are resonant.

Without knowing the coordinates of the two coexisting 2-cycles, one can use R4(X,y) to
determine their attenuance or resonance. To illustrate this, we calculate second partials to
determine the following values.

w1 = 115 Wi = 150 wi3z = 200 Woy = 15 w3 = 36 w33z = 13

Ra(x,5) = wia’ 4+ wpaf 4+ wiay+ W22,82 + waBy+ W33’)/2 > 0.

As predicted above, R4(X,y) > 0 and the two 2-cycles together are resonant.

8. Conclusion

Many experimental and theoretical studies predict that populations are either enhanced or
suppressed by periodic environments [2,6,9-12,14,15,18,19,22-27,29-31,37,40—-43].
However, in most theoretical studies, with only a few exceptions (see [6,19,23,25,31,38]),
only the carrying capacity or a demographic characteristic of the species (one or two
parameters) are periodically forced. It is known that unimodal maps under period-2 forcing
in two model parameters routinely have up to three coexisting 2-cycles [19,31,38]. Our
results, on population models with three model parameters which are 2-periodically forced,
support these predictions. We prove that small 2-periodic fluctuations of both the carrying
capacity and two demographic characteristics of the species generate 2-cyclic population
oscillations. Our results predict both attenuance and resonance in 2-periodically forced,
three-parameter population models. As in Ref. [19], we derive a signature function, R4, for
determining the response of discretely reproducing populations to periodic fluctuations of
their carrying capacity and two demographic characteristics. R, is the sign of a weighted
sum of the relative strengths of the oscillations of the three parameters. Periodic
environments are deleterious for the population when R is negative, and favorable when R4
is positive. A change in the relative strengths of the environmental and demographic
fluctuations can shift the system from attenuance to resonance and vice versa.

We compute R, for the Smith—Slatkin model, and determine regions in parameter space
where its weights are positive and negative. Once the signs of the weights are known, R, can
be used to decide whether in phase or out of phase forcing of the three parameters is
deleterious or beneficial for the population. When n = 1 and mk is large in the Smith—Slatkin
model, a periodic environment is detrimental to the species when the fluctuations in the
carrying capacity are out of phase with the fluctuations in the demographic characteristics of
the species. However, when n > 2 and mk is large, these same fluctuations lead to an increase
in the average population biomass.

In constant environments, unimodal maps are capable of supporting 2-cycles. We prove
that small 2-periodic perturbations of a 2-cycle of the unforced three-parameter system
produce two (coexisting) 2-cycle populations. As in Ref. [19], we compute R, for the
coexisting 2-cycles. Usually, one of the 2-cycles will be attenuant and the other will be
resonant. We use examples to illustrate attenuant and resonant 2-cycles that perturb from a 2-
cycle of the unforced classical Smith—Slatkin model.



Attenuance and resonance in Smith—Slatkin’s model 307

Our analysis and examples illustrate that, the response of populations to periodic
environments is a complex function of the period of the environments, the carrying
capacities, all the demographic characteristics of the species, and the type and nature of the
fluctuations.
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