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We study the responses of discretely reproducing populations to periodic fluctuations in three parameters: the
carrying capacity and two demographic characteristics of the species. We prove that small 2-periodic
fluctuations of the three parameters generate 2-cyclic oscillations of the population. We develop a signature
function for predicting the responses of populations to 2-periodic fluctuations. Our signature function is the
sign of a weighted sum of the relative strengths of the oscillations of the three parameters. Periodic
environments are deleterious for populations when the signature function is negative, while positive signature
functions signal favorable environments. We compute the signature function for the Smith–Slatkin model,
and use it to determine regions in parameter space that are either favorable or detrimental to the species.
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1. Introduction

Franke and Yakubu, in a recent paper, used classical parametric single species discrete-time

population models to study the responses of populations to periodic fluctuations in two

parameters, the carrying capacity and the demographic characteristic of the population (growth

rate) [19]. In constant environments, many classical discrete-time single species population

models have three parameters, the carrying capacity and two demographic characteristics of the

species [1–25,27–43]. Examples of such 3-parameter single species models include the Smith–

Slatkin, Hassell, Bobwhite quail and Maynard-Smith models [1,3–5,19–21,33–36,43]. In this

paper, we focus on the effects of 2-periodic forcing of the carrying capacity and two

demographic characteristics on populations governed by discrete-time models. Many of our

arguments are similar to those in the two parameter paper [19] but are more complicated because

of the third parameter.

Periodic environments are known to be deleterious for populations governed by the logistic

differential or difference equations [6,39]. That is, the average of the resulting oscillations in the

periodic environment is less than the average of the carrying capacities in corresponding

constant environments (attenuance). Cushing and Henson obtained similar results for 2-periodic

monotone models [6]. Elaydi and Sacker [9–12], Franke and Yakubu [15–19], Kocic [27], and
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Kon [29,30] have since extended these results to include p-periodic Beverton–Holt

population models with or without age–structure, where p . 2: These results are known to

be model-dependent [6]. However, in almost all the theoretical studies, with only a few

exceptions (see [9–12,19]), only two parameters are periodically-forced: the carrying

capacity of the species and one demographic characteristic of the species.

Unimodal maps under period-2 forcing in two parameters routinely have up to three

coexisting 2-cycles (see [31,38] for examples). We use the Smith–Slatkin model to illustrate

multiple 2-cycles in maps under period-2 forcing in three parameters. Also, we construct a

signature function, Rd , for determining whether the average total biomass is suppressed via

attenuant stable 2-cycles or enhanced via resonant stable 2-cycles. As in Ref. [19], Rd is the

sign of a weighted sum of the relative strengths of the oscillations of carrying capacity and

the two demographic characteristics of the species. We use the 3-parameter Smith–Slatkin

model to illustrate that, in the presence of periodic forcing, an inverse relationship between

the carrying capacity and one of the demographic characteristics of the species can lead to a

decrease in the population biomass (attenuance). However, large values of the carrying

capacity and one of the demographic characteristics of the species can lead to an increase in

the population biomass (resonance). Consequently, a change in relative strengths of

oscillations of carrying capacity and at least one of the demographic characteristics of a

species is capable of shifting population dynamics from attenuant to resonant cycles and vice

versa. It is know that this dramatic shift is not possible in population models with a single

fluctuating parameter [19,22,23].

Section 2 introduces our framework for studying the impact of environmental fluctuations

on discrete-time population models with three fluctuating parameters. In Section 3, we prove

that small 2-periodic perturbations of the carrying capacity and the demographic

characteristics of the unforced system produce 2-cycle populations. The signature function,

Rd, for predicting resonant and attenuant 2-cycles that perturb from the equilibrium given by

the carrying capacity of the unforced system is introduced in Section 4. Rd for the Smith–

Slatkin model, and regions in parameter space for the support of attenuant or resonant 2-

cycles that perturb from the equilibrium given by the carrying capacity are given in Section 5.

In Sections 3–5, we assume that a 2-cycle must, for small forcing, be close to the carrying

capacity. However, the carrying capacity does not have to be the only source of 2-cycles.

To compute Rd for the other coexisting 2-cycles, in Sections 6 and 7 we assume that two 2-

cycles perturb from (the two different phases of) a 2-cycle in the unforced model. In Section

6, we prove that small 2-periodic perturbations of a 2-cycle of the unforced system produce

two 2-cycle populations. Signature functions, Rd, for 2-species Kolmogorov type discrete-

time population models with 2-periodic forcing of 2-cycles are introduced in Section 7. Rd

for the Smith–Slatkin model, and regions in parameter space for the support of attenuant or

resonant coexisting 2-cycles in the model are also given in Section 7. The implications of our

results are discussed in Section 8.

2. Population models with three parameters

Theoretical ecology literature is filled with single species discrete-time population models

that have three parameters. Table 1 is a list of specific classical examples of population

models with three parameters.
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In Ref. [19], Franke and Yakubu studied the combined effects of 2-periodic forcing of two

model parameters, the carrying capacity and a demographic characteristic of the species. To

study the impact of 2-periodic forcing of three model parameters, we consider population

models of the general form

xðt þ 1Þ ¼ xðtÞgðk;m; n; xðtÞÞ; ð1Þ

where x(t) is the population size at generation t, m and n are demographic characteristics

of the species and k is the carrying capacity, i.e. gðk;m; n; kÞ ¼ 1. The per capita

growth rate g [ C 3ðR
+

þ £ R
+

þ £ R
+

þ £ R
+

þ;R
+

þÞ, where Rþ ¼ ½0;1Þ and R
+

þ ¼ ð0;1Þ. To

simplify the notation we will let PðxÞ ¼ ðk;m; n; xÞ.

For each triple of positive constants k, m and n, define

f k;m;n : Rþ ! Rþ

by

f k;m;nðxÞ ¼ xgðPðxÞÞ:

The set of iterates of f k;m;n is equivalent to the set of density sequences generated by

Model (1).

Table 1 lists the classic Smith–Slatkin, Hassell and Maynard-Smith models [3–5,19–21]

that we denote as Models I, II and III, respectively. In Model I, the carrying capacity ðk . 0Þ

is an attracting positive fixed point whenever either 0 , n , 2 or m , ð1=kÞð2=n2 2Þ1=n.

However, in Models II and III, the carrying capacity is an attracting positive fixed point when

0 , nð1 2 ð1=ðmÞ1=nÞÞ , 2 and 1 , m; nðm2 1Þ , 2m, respectively (see column 2 of

table 1 for stability conditions).

When the carrying capacity, k, as well as both of the demographic characteristics, m and n,

are 2-periodically forced, then equation (1) becomes

xðt þ 1Þ ¼ xðtÞgðkð1 þ að21ÞtÞ; mð1 þ bð21ÞtÞ; nð1 þ gð21ÞtÞ; xðtÞÞ; ð2Þ

where the relative strengths of the perturbations a;b; g [ ð21; 1Þ: Unimodal maps with

period-2 forcing routinely have up to three coexisting 2-cycles. For two-parameter discrete-

time population models, these results were obtained by Franke–Yakubu [19], Kot–Schaffer

[31] and Rodriguez [38]. In Sections 5 and 7, we use the Smith–Slatkin model, Model I in

table 1, to illustrate specific examples of equation (2).

When

x1 ¼ x0gðkð1 þ aÞ;mð1 þ bÞ; nð1 þ gÞ; x0Þ and

x0 ¼ x1gðkð1 2 aÞ;mð1 2 bÞ; nð1 2 gÞ; x1Þ;

Table 1. Examples of three-parameter population models.

Model fk;m;nðxÞ ¼ Parameters giving stable carrying capacity, k . 0 References

ð1þðmkÞnÞx
1þðmxÞn

0 , n , 2 or 0 , m , 1
k

2
n22Þ1=n

� �
Smith–Slatkin (1950) [3–5,19–21]

mk nx
ðkþðmÞ1=n21ÞxÞn

0 , n 1 2 1
m 1=n

� �
, 2 Hassell (1954) [3–5,19–21]

k nmx
k nþðm21Þx nÞ

1 , m; nðm2 1Þ , 2m Maynard-Smith (1974) [3–5,19–21]
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then {x0; x1} is a 2-cycle for equation (2). Depending on model parameters, 2-periodic

dynamical systems have globally stable 2-cycles [15–19]. In the next section, we obtain

conditions for the global stability of the 2-cycle of equation (2) under the assumption that the

2-cycle must, for small forcing, be close to the carrying capacity. In general, the carrying

capacity does not have to be the only source of 2-cycles. For example, in the logistic and

Ricker maps with two parameters, the other two 2-cycles perturb from the 2-cycle of the

unforced system.

As in Ref. [19], when a 2-cycle perturbs from the equilibrium given by the carrying

capacity k, we use the following definition to compare the average of the 2-cycle with the

carrying capacity k.

Definition 1. A 2-cycle of equation (2) is attenuant (resonant) if its average value is less

(greater) than the carrying capacity k [6].

Next, we introduce similar definitions for attenuant and resonance 2-cycles that are

perturbations of 2-cycles. When a 2-cycle perturbs from the 2-cycle of the unforced model,

{�x; �y}, we use the following definition from Ref. [19] to compare the average of the 2-cycle

with the average of {�x; �y}.

Definition 2. A 2-cycle of equation (2) is attenuant (resonant) if its average value is less

(greater) than ð�xþ �y=2Þ.

When two 2-cycles perturb from the 2-cycle of the unforced model, {�x; �y}, we use the

following definition to compare the average of the two 2-cycles together with the average of

{�x; �y}.

Definition 3. Let {�x0; �x1} and {�y0; �y1} denote two coexisting 2-cycles of equation (2) that

perturb from {�x; �y}. Together, {�x0; �x1} and {�y0; �y1}, are attenuant (resonant) if their average

value

�x0 þ �y0 þ �x1 þ �y1

4

is less (greater) than ð�xþ �y=2Þ.

These definitions of attenuant and resonant cycles refer to a decrease and an increase in

average total population sizes, respectively [19].

3. 2-Cycle perturbations from unforced carrying capacity: 2-cycle attractor

It is known that small 2-periodic perturbations of a single parameter can generate population

cycles of period 2 in population models with either one or two parameters [14,19,23]. In this

section, we illustrate that small 2-periodic perturbations of the carrying capacity, k, and the

two demographic characteristics of the population governed by equation (2), m and n,

produce 2-cycle populations, {x0; x1} with x0 and x1 near k. This 2-cycle reduces to the

carrying capacity in the absence of period-2 forcing in the parameters. To simplify the

notation, throughout the paper we let

PðkÞ ¼ ðk;m; n; kÞ; Pð0; xÞ ¼ ð0; 0; 0; k;m; n; xÞ
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and

Pða; xÞ ¼ ða;b; g; k;m; n; xÞ:

Theorem 4. Suppose

›g

›x

����
PðkÞ

– 0 and
›g

›x

����
PðkÞ

– 2
2

k
:

Then for all sufficiently small jaj; jbj and jgj, equation (2) has a 2-cycle population

{x0 ¼ x0ða;b; gÞ; x1 ¼ x1ða;b; gÞ};

where

lim
ða;b;gÞ!ð0;0;0Þ

x0ða;b; gÞ ¼ lim
ða;b;gÞ!ð0;0;0Þ

x1ða;b;gÞ ¼ k

and x0ða;b; gÞ; x1ða;b; gÞ are C 3 with respect to a;b and g. If the carrying capacity, k, is

locally asymptotically stable (unstable), then the 2-cycle is locally asymptotically stable

(unstable).

Proof. Let

FðPða; xÞÞ ¼ f kð12aÞ;mð12bÞ;nð12gÞ+f kð1þaÞ;mð1þbÞ;nð1þgÞðxÞ:

To prove this result, we look for fixed points of the composition map

FðPða; xÞÞ ¼ f ðkð1 2 aÞ;mð1 2 bÞ; nð1 2 gÞ; f ðkð1 þ aÞ;mð1 þ bÞ; nð1 þ gÞ; xÞÞ

¼ xgðk̂; m̂; n̂; xÞgð~k; ~m; ~n; xgðk̂; m̂; n̂; xÞÞ;

where k̂ ¼ kð1 þ aÞ, m̂ ¼ mð1 þ bÞ, n̂ ¼ nð1 þ gÞ, ~k ¼ kð1 2 aÞ, ~m ¼ mð1 2 bÞ and

~n ¼ nð1 2 gÞ.

Note that FðPð0; xÞÞ ¼ k and

›F

›x

����
Pð0;xÞ

¼ 1 þ k
›g

›x

����
PðkÞ

 !2

:

Since

›g

›x

����
PðkÞ

– 0 and
›g

›x

����
PðkÞ

– 2
2

k
;

›F

›x

����
Pð0;kÞ

– 1:

These partial derivative conditions on g are equivalent to f ðk;m;nÞ being hyperbolic at k. The

theorem follows from a direct application of the Implicit Function Theorem to F. A

The carrying capacity, k, is a hyperbolic fixed point of f k;m;n if jðdf k;m;n=dxÞðkÞj – 1. When

k is a hyperbolic fixed point of f k;m;n then ð›g=›xÞjPðkÞ – 0, ð›g=›xÞjPðkÞ – 2ð2=kÞ and the

following result is immediate.
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Corollary 5. If the carrying capacity is a hyperbolic fixed point of equation (1), then for

all sufficiently small jaj; jbj and jgj, equation (2) has a 2-cycle population

{x0 ¼ x0ða;b; gÞ; x1 ¼ x1ða;b; gÞ};

where

lim
ða;b;gÞ!ð0;0;0Þ

x0ða;b; gÞ ¼ lim
ða;b;gÞ!ð0;0;0Þ

x1ða;b;gÞ ¼ k

and x0ða;b; gÞ; x1ða;b; gÞ are C
3 with respect to a, b and g. If the carrying capacity, k, is

locally asymptotically stable (unstable), then the 2-cycle is locally asymptotically stable

(unstable).

By Corollary (5), table 1 gives parameter regimes for the occurrence of a locally stable 2-

cycle in three specific three-parameter population models under small period-2 perturbations

of the carrying capacity and the two demographic characteristics of the species. Since these

population models can have up to 3 coexisting 2-cycles (two stable and one unstable), these

are not the only such parameter regimes.

4. 2-Cycle perturbation from unforced carrying capacity: signature function

In this section, we show that small perturbations of the carrying capacities and the two

demographic characteristics of the species generate both attenuant and resonant 2-cycles,

depending on the relative strengths of the fluctuations. As in the previous section, we assume

that the 2-cycle must, for small forcing, be close to the carrying capacity. For this 2-cycle, we

develop a signature function, Rd, for determining whether the average total biomass is

suppressed via attenuance or enhanced via resonance.

When the carrying capacity, k, is a hyperbolic fixed point of f k;m;n then Corollary (5)

guarantees that the 2-cycle solution of equation (2) can be expanded in terms of a, b and g as

follows:

x0ða;b; gÞ ¼ k þ x̂0ða;b; gÞ þ x013agþ x022b
2 þ x023bgþ x033g

2 þ R0ða;b; gÞ ð3Þ

where

x̂0ða;b; gÞ ¼ x01aþ x02bþ x03gþ x011a
2 þ x012ab;

x01; x02; x03; x011; x012; x013; x022; x023, and x033 are the coefficients and limða;b;gÞ!ð0;0;0Þ

ðR0ða;b; gÞ=a
2 þ b2 þ g2Þ ¼ 0 The expansion of the second point in the 2-cycle in terms of

a;b and g is as follows:

x1ða;b; gÞ ¼ k þ x̂1ða;b; gÞ þ x113agþ x122b
2 þ x123bgþ x133g

2 þ R1ða;b; gÞ ð4Þ

where

x̂1ða;b; gÞ ¼ x11aþ x12bþ x13gþ x111a
2 þ x112ab;

x11; x12; x13; x111; x112; x113; x122; x123 and x133 are the coefficients and

lim
ða;b;gÞ!ð0;0;0Þ

R1ða;b; gÞ

a2 þ b2 þ g2
¼ 0:
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We will use the following two auxiliary lemmas concerning the coefficients in equations

(3) and (4) to establish the following expression for the average of the 2-cycle:

x0ða;b; gÞ þ x1ða;b; gÞ

2
¼ k þ

ðx011 þ x111Þ

2
a2 þ

ðx012 þ x112Þ

2
abþ

ðx013 þ x113Þ

2
ag

þ
R0ða;b; gÞ þ R1ða;b; gÞ

2
:

Lemma 6. In equations (3) and (4),

x02 ¼ x03 ¼ x12 ¼ x13 ¼ x022 ¼ x023 ¼ x033 ¼ x122 ¼ x123 ¼ x133 ¼ 0:

Proof. When a ¼ 0,

x0ð0;b; gÞ ¼ k þ x02bþ x03gþ x022b
2 þ x023bgþ x033g

2 þ R0ð0;b; gÞ and

x1ð0;b; gÞ ¼ k þ x12bþ x13gþ x122b
2 þ x123bgþ x133g

2 þ R1ð0;b; gÞ:

However, the fixed point of f k;mð1^bÞ;nð1^gÞ is k. Thus,

f k;mð12bÞ;nð12gÞ+f k;mð1þbÞ;nð1þgÞðkÞ ¼ k and x0ð0;b; gÞ ¼ x1ð0;b; gÞ ¼ k:

Therefore,

x02 ¼ x03 ¼ x12 ¼ x13 ¼ x022 ¼ x023 ¼ x033 ¼ x122 ¼ x123 ¼ x133 ¼ 0:

A

By this result, the coefficients of the relative strength b; g;b2 and g2 in equations (3) and

(4) are zero. The next result establishes that the sum of the coefficients of the relative strength

a in equations (3) and (4) is zero.

Lemma 7. In equations (3) and (4), if

›g

›x

����
PðkÞ

– 0;

then

x01 þ x11 ¼ 0:

Proof. Since

x1ða;b; gÞ ¼ f kð1þaÞ;mð1þbÞ;nð1þgÞðx0ða;b; gÞÞ ¼ x0ða;b; gÞgðk̂; m̂; n̂; x0ða;b; gÞÞ;

where k̂ ¼ kð1 þ aÞ; m̂ ¼ mð1 þ bÞ and n̂ ¼ nð1 þ gÞ:

Therefore,

x11 ¼
›½x0ða;b; gÞgðk̂; m̂; n̂; x0ða;b; gÞÞ�

›a

����
Pða;xÞ¼Pð0;kÞ

:
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Similarly,

x0ða;b; gÞ ¼ f kð12aÞ;mð12bÞ;nð12gÞðx1ða;b; gÞÞ

¼ x1ða;b; gÞgð~k; ~m; ~n; x1ða;b; gÞÞ;

where ~k ¼ kð1 2 aÞ; ~m ¼ mð1 2 bÞ and ~n ¼ nð1 2 gÞ:

Therefore,

x01 ¼
›½x1ða;b; gÞgð�k; �m; �n; x1ða;b; gÞÞ�

›a

����
Pða;xÞ¼Pð0;kÞ

:

Hence,

x11 ¼ x01 1 þ k
›g

›x

����
PðkÞ

 !
þ k 2›g

›k

����
PðkÞ

and x01 ¼ x11 1 þ k
›g

›x

����
PðkÞ

 !
2 k 2›g

›k

����
PðkÞ

:

Adding produces

ðx01 þ x11Þk
›g

›x

����
PðkÞ

¼ 0:

Since k – 0 and ð›g=›gÞjPðkÞ – 0,

x01 þ x11 ¼ 0:

A

Let

Rd ¼

signðw1aþ w2bþ w3gÞ if a . 0

0 if a ¼ 0

2signðw1aþ w2bþ w3gÞ if a , 0

8>><
>>: ;

where

w1 ¼
ðx011 þ x111Þ

2
; w2 ¼

ðx012 þ x112Þ

2
and w3 ¼

ðx013 þ x113Þ

2
:

Rd is the sign of a weighted sum of the relative strengths of the oscillations of the carrying

capacity and the two demographic characteristics of the species. A compact expression for

Rd is

Rd ¼ signðaðw1aþ w2bþ w3gÞÞ:

In the following result, we show that Rd determines when the 2-cycle is either attenuant or

resonant.

Theorem 8. If the carrying capacity is a hyperbolic fixed point of equation (1), then for all

sufficiently small jaj, jbj and jgj, equation (2) has an attenuant (a resonant) 2-cycle ifRd is

negative (positive).
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Proof. Lemmas (6) and (7) establish that the average of the 2-cycle predicted in Corollary (5)

satisfies the equation

x0ða;b; gÞ þ x1ða;b; gÞ

2
¼ k þ

ðx011 þ x111Þ

2
a2 þ

ðx012 þ x112Þ

2
ab

þ
ðx013 þ x113Þ

2
agþ

R0ða;b; gÞ þ R1ða;b; gÞ

2

¼ k þ aðw1aþ w2bþ w3gÞ þ
R0ða;b; gÞ þ R1ða;b; gÞ

2
:

Since,

lim
ða;b;gÞ!ð0;0;0Þ

R0ða;b; gÞ

a2 þ b2 þ g2
¼ lim

ða;b;gÞ!ð0;0;0Þ

R1ða;b; gÞ

a2 þ b2 þ g2
¼ 0;

the sign of

x0ða;b; gÞ þ x1ða;b; gÞ

2
2 k

is the same as the sign of aðw1aþ w2bþ w3gÞ which is Rd, for all sufficiently small jaj, jbj

and jgj and Rd – 0. If ðx0ða;b; gÞ þ x1ða;b; gÞ=2Þ2 k . 0, then the 2-cycle is resonant and

if ðx0ða;b; gÞ þ x1ða;b; gÞ=2Þ2 k , 0, then the 2-cycle is attenuant. A

When the demographic characteristics are fluctuating but the carrying capacity is constant

(that is, a ¼ 0;b – 0 and g – 0), then the 2-cycle degenerates into a fixed point at the

carrying capacity. However, when the demographic characteristics are constant but the

carrying capacity is fluctuating (a – 0, b ¼ 0 and g ¼ 0) Theorem (8) and the definition of

Rd give the following result.

Corollary 9. If the carrying capacity is a hyperbolic fixed point of equation (1) and only

the carrying capacity is fluctuating (b ¼ 0 and g ¼ 0), then for all sufficiently small jaj,

Rd ¼ signðw1Þ

and equation (2) has an attenuant (a resonant) 2-cycle if w1 is negative (positive).

Population models with 3 parameters which are 2-periodically forced are capable of

experiencing both resonance and attenuance. We formalize this in the following result.

Corollary 10. If the carrying capacity is a hyperbolic fixed point of equation (1), then for

all sufficiently small jaj, jbj and jgj, equation (2) has an attenuant (a resonant) 2-cycle if

a . 0, w2 þ w3 . 0 and max{b; g} , 2ðw1=w2 þ w3Þa (min{b; g} . 2ðw1=w2 þ w3Þa).

Also, equation (2) has an attenuant (a resonant) 2-cycle if a . 0, w2 þ w3 , 0 and

min{b; g} . 2ðw1=w2 þ w3Þa (max{b; g} , 2ðw1=w2 þ w3Þa). Consequently, if w2 þ

w3 – 0 the model has both attenuant and resonant cycles.

Proof. If w2 þ w3 . 0;a . 0 and max{b; g} , 2ðw1=w2 þ w3Þa, then w2bþ w3g

, 2w1a, w1aþ w2bþ w3g , 0;aðw1aþ w2bþ w3gÞ , 0 and Rd is negative. Thus,

Theorem (8) gives that the 2-cycle is attenuant. Similar arguments establish the rest of

the proof. A
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5. 2-Cycle perturbation from unforced carrying capacity: Smith–Slatkin model

In this section, we use our theorems to study the impact of the combined effects of a

fluctuating carry capacity and demographic characteristics on the average total biomass of

populations that are governed by the Smith–Slatkin model (table 1). Specifically, we

compute Rd and use it to investigate parameter regimes of attenuance and resonance of the 2-

cycle that perturbs from the equilibrium given by the carrying capacity.

When the carrying capacity and both of the demographic characteristics are 2-periodically

forced, then the classic Smith–Slatkin model becomes

xðt þ 1Þ ¼ xðtÞ
1 þ ðmð1 þ ð21ÞtbÞkð1 þ ð21ÞtaÞÞnð1þð21ÞtgÞ

1 þ ðmð1 þ ð21ÞtbÞxðtÞÞnð1þð21ÞtgÞ
: ð5Þ

From table 1, in constant environment, the carrying capacity, k, is asymptotically stable when

n , 2 or m , ð1=kÞð2=n2 2Þ1=n. In either of these cases, Corollary (5) predicts a stable 2-

cycle in Model (5).

Let A¼ ð12 nþ 4ðmkÞn 2 4ðmkÞnnþ 4ðmkÞ3n 2 ðmkÞ4nnþðmkÞ4n, B¼ ðmkÞnn2 2

6ðmkÞ2nn2 4ðmkÞ3nnþ 6ðmkÞ2n þ 2ðmkÞ2nn2 þðmkÞ3nn2 and C¼ ðmkÞ3nþ 2ðmkÞnn lnðmkÞþ

ðmkÞ2nn lnðmkÞþ n lnðmkÞ. To determine the effects of periodicity on the 2-cycle, we obtain

that Rd ¼ signðaðw1aþ w2bþ w3gÞÞ, where

w1 ¼
24kðAþ BÞ

ð1 þ ðmkÞnÞ2ð22 2 2ðmkÞn þ ðmkÞnnÞ2
;

w2 ¼
24kn

22 2 2ðmkÞn þ ðmkÞnn
;

w3 ¼
24kð3ðmkÞn þ 3ðmkÞ2n þ 1 þ CÞ

ð1 þ ðmkÞnÞ2ð22 2 2ðmkÞn þ ðmkÞnnÞ
:

When n ¼ 1,

w1 ¼ 2
4mk 2

ð2 þ mkÞ2
;

w2 ¼
4k

2 þ mk
;

w3 ¼
4kðmk þ 1 þ lnðmkÞÞ

2 þ mk
:

If mk þ 1 þ lnðmkÞ . 0, a . 0, b , 0 and g , 0, then Rd , 0 and the 2-cycle is attenuant.

That is, a periodic environment is detrimental to the species when the fluctuations in the

carrying capacity are out of phase with the fluctuations in the demographic characteristics of

the species. Since ðw1=w2Þ ¼ 2ðmk=2 þ mkÞ, if b . 2ðw1=w2Þa ¼ ðmk=2 þ mkÞa and all

the three fluctuations are in phase, then Rd . 0 and the 2-cycle is resonant (Figure 1).
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When n ¼ 3;

w1 ¼
4kð2m3k 3 2 1Þ

m 3k 3 2 2
;

w2 ¼ 2
12k

m 3k 3 2 2
;

w3 ¼ 2
4kðm3k 3 þ 1 þ 3 lnmkÞ

m3k 3 2 2
:

If ð1=
ffiffiffi
32

p
Þ , mk ,

ffiffiffi
32

p
; then w1 , 0, w2 . 0 and w3 . 0 (Figure 2). If, in addition, the

fluctuations in the carrying capacity are out of phase with the fluctuations in the demographic

characteristics of the species, then Rd , 0 and the 2-cycle is attenuant. That is, in the

presence of periodic forcing, an inverse relationship between the carrying capacity and one

of the demographic characteristics of the species can lead to a decrease in the population

biomass. If mk .
ffiffiffi
32

p
, then w1 . 0, w2 , 0 and w3 , 0 (Figure 2). If, in addition, the

fluctuations in the carrying capacity are out of phase with the fluctuations in the demographic

characteristics of the species, then Rd . 0 and the 2-cycle is resonant. That is, in the

presence of periodic forcing, large values of the carrying capacity and one of the

demographic characteristics of the species can lead to an increase in the population biomass.

As in the case when n ¼ 3, any time n . 2 there are two hyperbolas, mk ¼ c1 and mk ¼ c2

with c1 , c2, in the first quadrant of the m,k-plane such that w1 . 0, w2 , 0 and w3 , 0

above the higher curve and w1 . 0, w2 . 0 and w3 , 0 below the lower curve. This shows

that if n . 2 in the Smith–Slatkin model, out of phase forcing of the carrying capacity and

the demographic characteristics leads to an increase in the average population biomass

whenever km is large. However, if the forcing is in phase and the forcing of the demographic

characteristics are strong enough then the average population biomass decreases. In the

Figure 1. Regions in the km-plane where w1, w2 and w3 are positive and negative for the 2-periodic Smith–Slatkin
model, where n ¼ 1.
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region where km is small, in phase fluctuations of k and n together with out of phase

fluctuations in m lead to an increase in the average total population biomass.

6. 2-Cycle perturbation from unforced 2-cycle: two coexisting 2-cycles

The classic Smith–Slatkin model, a unimodal map, is capable of undergoing period-

doubling bifurcations route to chaos. In this section, we illustrate that small 2-periodic

perturbations of a 2-cycle of equation (1), denoted by {�x; �y}, produce two 2-cycle

populations, {�x0; �x1} and {�y0; �y1} with �x0, �y1 near �x and �x1, �y0 near �y. These two 2-cycles

reduce to the 2-cycle {�x; �y} in the absence of period-2 forcing in the parameters.

Recall that in the absence of period-2 forcing our general model, equation (1), is

f k;m;nðxÞ ¼ f ðPðxÞÞ ¼ xgðPðxÞÞ:

Unlike the previous sections, we now assume throughout that f k;m;nðxÞ has a 2-cycle, {�x; �y}.

Next, we proceed as in Corollary 5 and use the Implicit Function Theorem to show that, for

small forcing, two coexisting 2-cycles perturb from {�x; �y}. In this result,

FðPða; xÞÞ ¼ f kð12aÞ;mð12bÞ;nð12gÞ+f kð1þaÞ;mð1þbÞ;nð1þgÞðxÞ:

Theorem 11. Assume f k;m;n has a hyperbolic 2-cycle, {�x; �y}. Then for all sufficiently small

jaj jbj and jgj, equation (2) has a pair of 2-cycle populations

{�x0 ¼ �x0ða;b; gÞ; �x1 ¼ �x1ða;b; gÞ}

Figure 2. Regions in the km-plane where w1, w2 and w3 are positive and negative for the 2-periodic Smith–Slatkin
model, where n ¼ 3:
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and

{�y0 ¼ �y0ða;b; gÞ; �y1 ¼ �y1ða;b; gÞ}

where

lim
ða;b;gÞ!ð0;0;0Þ

�x0ða;b; gÞ ¼ �x; lim
ða;b;gÞ!ð0;0;0Þ

�x1ða;b; gÞ ¼ �y; lim
ða;b;gÞ!ð0;0;0Þ

�y1ða;b; gÞ ¼ �x;

lim
ða;b;gÞ!ð0;0;0Þ

�y0ða;b; gÞ ¼ �y;

and �x0ða;b;gÞ; �x1ða;b; gÞ, �y0ða;b; gÞ; �y1ða;b; gÞ are C
3 with respect to a;b and g. If the 2-

cycle, {�x; �y}, is locally asymptotically stable (unstable), then the two 2-cycles are locally

asymptotically stable (unstable).

Proof.

FðPða; xÞÞ ¼ xgðk̂; m̂; n̂; xÞgð~k; ~m; ~n; xgðk̂; m̂; n̂; xÞÞ;

where k̂ ¼ kð1 þ aÞ, m̂ ¼ mð1 þ bÞ, n̂ ¼ nð1 þ gÞ, ~k ¼ kð1 2 aÞ, ~m ¼ mð1 2 bÞ and

~n ¼ nð1 2 gÞ. Thus, FðPð0; �xÞÞ ¼ �x and FðPð0; �yÞÞ ¼ �y. The 2-cycle, {�x; �y}, is a hyperbolic

fixed point of f 2
k;m;n if

›f 2
k;m;n

›x
ð�xÞ

�����
����� ¼ ›f k;m;n

›x
ð�xÞ�

›f k;m;n

›x
ð�yÞ

����
���� – 1:

Hence,

›F

›x

����
Pð0;�xÞ

¼
›f k;m;n

›x

����
ð�yÞ

�
›f k;m;n

›x

����
ð�xÞ

¼
›F

›x

����
Pð0;�yÞ

– 1:

As in the proof of Theorem 4 and Corollary 5, we apply the Implicit Function Theorem at

Pð0; �xÞ and Pð0; �yÞ to get

�x0 ¼ �x0ða;b; gÞ �y0 ¼ �y0ða;b; gÞ

as two 3-parameters families of fixed points of F

Hence, �x0ða;b; gÞ and �y0ða;b; gÞ each gives us a 2-cycle for the 2-periodic dynamical

system

{f kð12aÞ;nð12bÞ;nð12gÞðxÞ; f kð1þaÞ;nð1þbÞ;nð1þgÞðxÞ}:

Let

�x1ða;b; gÞ ¼ f kð1þaÞ;nð1þbÞ;nð1þgÞð�x0ða;b;gÞÞ

and

�y1ða;b; gÞ ¼ f kð12aÞ;nð12bÞ;nð12gÞð�y0ða;b; gÞÞ:

Then

�x0ða;b; gÞ ¼ f kð12aÞ;nð12bÞ;nð12gÞð�x1ða;b; gÞÞ and

�y0ða;b; gÞ ¼ f kð1þaÞ;nð1þbÞ;nð1þgÞð�y1ða;b; gÞÞ:
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7. 2-Cycle perturbation from unforced 2-cycle: signature function

In this section, we obtain a signature function, Rd, under the assumption that a 2-cycle must,

for small forcing, be close to the 2-cycle {�x; �y} of equation (1). When the 2-cycle {�x; �y} is

hyperbolic, Theorem (11) guarantees the four three-parameter families,

�x0ða;b; gÞ; �x1ða;b; gÞ; �y0ða;b; gÞ and �y1ða;b; gÞ;

where

�x1ða;b; gÞ ¼ f kð1þaÞ;nð1þbÞ;nð1þgÞð�x0ða;b;gÞÞ

and

�y1ða;b; gÞ ¼ f kð1þaÞ;nð1þbÞ;nð1þgÞð�y0ða;b; gÞÞ:

Note that

�x0ða;b; gÞ ¼ f kð12aÞ;nð12bÞ;nð12gÞð�x1ða;b; gÞÞ and

�y0ða;b; gÞ ¼ f kð12aÞ;nð12bÞ;nð12gÞð�y1ða;b; gÞÞ:

Let the linear expansion of these four 3-parameter families about ða;b; gÞ ¼ ð0; 0; 0Þ be

�x0ða;b; gÞ < �xþ x01aþ x02bþ x03g �x1ða;b;gÞ < �yþ x11aþ x12bþ x13g

�y0ða;b; gÞ < �yþ y01aþ y02bþ y03g �y1ða;b; gÞ < �xþ y11aþ y12bþ y13g:

Next, we state the formulas for the coefficients.

x01 ¼ 2

›F
›a

��
Pð0;�xÞ

›F
›x

��
Pð0;�xÞ

21
¼ 2

2k›f
›k

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* k›f

›k

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

x02 ¼ 2

›F
›b

���
Pð0;�xÞ

›F
›x

��
Pð0;�xÞ

21
¼ 2

2m ›f
›m

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* m›f

›m

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

x03 ¼ 2

›F
›g

���
Pð0;�xÞ

›F
›x

��
Pð0;�xÞ

21
¼ 2

2n›f
›n

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* n›f

›n

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

and

y01 ¼ 2

›F
›a

��
Pð0;�yÞ

›F
›x

��
Pð0;�yÞ

21
¼ 2

2k›f
›k

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* k›f

›k

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

y02 ¼ 2

›F
›b

���
Pð0;�yÞ

›F
›x

��
Pð0;�yÞ

21
¼ 2

2m ›f
›m

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* m›f

›m

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

y03 ¼ 2

›F
›g

���
Pð0;�yÞ

›F
›x

��
Pð0;�yÞ

21
¼ 2

2n›f
›n

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* n›f

›n

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
:
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To get the other 6 coefficients, we let �Fða;b; g; k;m; n; xÞ ¼ Fð2a;2b;2g; k;m; n; xÞ.

Then

�Fða;b; g; k;m; n; �x1ða;b;gÞÞ ¼ �x1ða;b; gÞ and

�Fða;b; g; k;m; n; �y1ða;b; gÞÞ ¼ �y1ða;b; gÞ:

Consequently,

x11 ¼ 2

›F
›a

��
Pð0;�yÞ

›F
›x

��
Pð0;�yÞ

21
¼ 2

2k›f
›k

��
Pð�xÞ

þ›f
›x

��
Pð�yÞ* k›f

›k

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

x12 ¼ 2

›F
›b

���
Pð0;�yÞ

›F
›x

��
Pð0;�yÞ

21
¼ 2

2m ›f
›m

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* m›f

›m

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

x13 ¼ 2

›F
›g

���
Pð0;�yÞ

›F
›x

��
Pð0;�yÞ

21
¼ 2

2n›f
›n

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* n›f

›n

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

and

y11 ¼ 2

›F
›a

��
Pð0;�xÞ

›F
›x

��
Pð0;�xÞ

21
¼ 2

2k›f
›k

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* k›f

›k

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

y12 ¼ 2

›F
›b

���
Pð0;�xÞ

›F
›x

��
Pð0;�xÞ

21
¼ 2

2m ›f
›m

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* m ›f

›m

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
;

y13 ¼ 2

›F
›g

���
Pð0;�xÞ

›F
›x

��
Pð0;�xÞ

21
¼ 2

2n›f
›n

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* n›f

›n

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
:

Let

Rdð�xÞ ¼ w1xaþ w2xbþ w3xg and Rdð�yÞ ¼ w1yaþ w2ybþ w3yg;

where

wix ¼ x0i þ x1i

and

wiy ¼ y0i þ y1i;

for each i [ {1; 2; 3}. As in our previous signature function, when the two 2-cycles perturb

from the 2-cycle in the unforced model, the signature function Rd is a weighted sum of the

relative strengths of the oscillations of the carrying capacity and the two demographic

characteristic of the species.

Lemma 12. Assume f k;m;n has a hyperbolic 2-cycle, {�x; �y}. Then for all sufficiently small

jaj, jbj and jgj, equation (2) has a pair of 2-cycle populations

{�x0 ¼ �x0ða;b; gÞ; �x1 ¼ �x1ða;b; gÞ}
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and

{�y0 ¼ �y0ða;b; gÞ; �y1 ¼ �y1ða;b; gÞ};

where Rdð�xÞ þRdð�yÞ ¼ 0.

Proof. By Theorem 11, the two coexisting 2-cycles exist. Next, we proceed to show that

Rdð�xÞ þRdð�yÞ ¼ 0.

Note that,

x01 þ x11 þ y01 þ y11 ¼ 2
2k›f

›k

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* k›f

›k

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
2

k›f
›k

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* 2k›f

›k

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21

2
2k›f

›k

��
Pð�xÞ

þ›f
›x

��
Pð�xÞ* k›f

›k

��
Pð�yÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21
2

k›f
›k

��
Pð�yÞ

þ›f
›x

��
Pð�yÞ* 2k›f

›k

��
Pð�xÞ

� �
›f
›x

��
Pð�yÞ*

›f
›x

��
Pð�xÞ

21

¼ 0:

Similarly x02 þ x12 þ y02 þ y12 ¼ 0 and x03 þ x13 þ y03 þ y13 ¼ 0. Hence,

Rdð�xÞ þRdð�yÞ ¼ 0. A

Note that, Rdð�xÞ þRdð�yÞ ¼ 0 implies wix ¼ 2wiy for each i [ {1; 2; 3}. The next result

shows that, typically, one of {�x0ða;b; gÞ; �x1ða;b; gÞ} or {�y0ða;b; gÞ; �y1ða;b; gÞ} is attenuant

while the other resonant.

Lemma 13. If x01 þ x11 – 0, x02 þ x12 – 0, and x03 þ x13 – 0, then for each fixed line

through the origin in ða;b; gÞ space not on the planeRdð�xÞ ¼ ðx01 þ x11Þaþ ðx02 þ x12Þbþ

ðx03 þ x13Þg ¼ 0 there is a neighborhood of ð0; 0; 0Þ such that on one side

{�x0ða;b; gÞ; �x1ða;b; gÞ} and {�y0ða;b; gÞ; �y1ða;b; gÞ} are respectively attenuant and

resonant and on the other side they are respectively resonant and attenuant.

Proof. To investigate the resonance or attenuance of {�x0ða;b; gÞ; x1ða;b; gÞ} we need to

look at �x0ða;b;gÞ þ �x1ða;b; gÞ2 ð�xþ �yÞ ¼ Rdð�xÞþ higher order terms. Approaching the

origin from one side along a fixed line through the origin in ða;b; gÞ space guarantees that the

sign of Rdð�xÞ does not change and that it eventually dominates the higher order terms. The

sign of Rdð�xÞ changes as we move to the other side of the origin. Thus, if Rdð�xÞ . 0 on one

side of the origin, {�x0ða;b; gÞ; �x1ða;b;gÞ} is resonant on this side and attenuant on the other

side. By the last lemma, Rdð�xÞ ¼ 2Rdð�yÞ and hence {�y0ða;b; gÞ; �y1ða;b; gÞ} will be

attenuant on the side where {�x0ða;b; gÞ; �x1ða;b; gÞ} is resonant and will be resonant on the

side where {�x0ða;b; gÞ; �x1ða;b; gÞ} is attenuant. A

Example 14. In the Smith–Slatkin Model with periodic forcing, equation (5), set the

following parameter values.

a ¼ b ¼ g ¼ 0; k ¼ 2;m ¼ 0:7 and n ¼ 3:
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Then there is an attracting 2-cycle at {1:2180; 2:8153}. Calculating derivatives at these

points we obtain

w1x ¼ x01 þ x11 ¼ 29:407036455 þ 9:407036504 ¼ 4:9 £ 1028

w2x ¼ x02 þ x12 ¼ 22:068233172 þ 3:665506391 ¼ 1:5973

w3x ¼ x03 þ x13 ¼ 20:750678311 þ 2:854772692 ¼ 2:1041:

By the last lemma, a 2-periodic force applied to this system, usually leads to the emergence

of two 2-cycles, where one of them is attenuant and the other is resonant.

Another interesting question is to compare the average of all four points on the two 2-

cycles with the average of �x and �y. Since Rdð�xÞ þRdð�yÞ ¼ 0, the answer to this question

comes from a second order form in ða;b; gÞ. Let

Rdð�x; �yÞ ¼ w11a
2 þ w12abþ w13agþ w22b

2 þ w23bgþ w33g
2;

where

w11 ¼ x011 þ x111 þ y011 þ y111

w12 ¼ x012 þ x112 þ y012 þ y112

w13 ¼ x013 þ x113 þ y013 þ y113

w22 ¼ x022 þ x122 þ y022 þ y122

w23 ¼ x023 þ x123 þ y023 þ y123

w33 ¼ x033 þ x133 þ y033 þ y133:

It is possible for Rdð�x; �yÞ to be positive everywhere except at the origin. For example,

Rdð�x; �yÞ . 0 except at the origin whenever w11;w22;w33 . 0 and w12 ¼ w13 ¼ w23 ¼ 0. In

this case, the four points together generate resonance. It is also possible for Rdð�x; �yÞ to be

negative everywhere except at the origin. For example, Rdð�x; �yÞ , 0 except at the origin

whenever w11;w22;w33 , 0 and w12 ¼ w13 ¼ w23 ¼ 0. In this case, the four points together

generate attenuance.

In ða;b; gÞ2 space, the sign of Rdð�x; �yÞ is constant on any ray starting at the origin. Thus,

if Rdð�x; �yÞ . 0 for some ða;b; gÞ, the four points are resonant for some small values of

ða;b; gÞ. For other rays starting at the origin, Rdð�x; �yÞ can be negative. Thus, the system can

support both resonant and attenuant perturbations.

Next, we perturb the previous example and obtain two coexisting stable 2-cycles where

one is attenuant and the other is resonant. In this example, the four points together are

resonant.

Example 15. In Example 14, fix all parameters at their current values and set

a ¼ b ¼ g ¼ 0:01:

As predicted by Theorem 11, the system has two coexisting 2-cycles, a resonant 2-cycle

{1:115945; 2:958663} and an attenuant 2-cycle {1:391256; 2:60988}. The average of the
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four points is 2.0189 and the average of the 2-cycle of the unperturbed system is 2.0166.

Hence, together the four points are resonant.

Without knowing the coordinates of the two coexisting 2-cycles, one can use Rdð�x; �yÞ to

determine their attenuance or resonance. To illustrate this, we calculate second partials to

determine the following values.

w11 ¼ 115 w12 ¼ 150 w13 ¼ 200 w22 ¼ 15 w23 ¼ 36 w33 ¼ 13

Rdð�x; �yÞ ¼ w11a
2 þ w12abþ w13agþ w22b

2 þ w23bgþ w33g
2 . 0:

As predicted above, Rdð�x; �yÞ . 0 and the two 2-cycles together are resonant.

8. Conclusion

Many experimental and theoretical studies predict that populations are either enhanced or

suppressed by periodic environments [2,6,9–12,14,15,18,19,22–27,29–31,37,40–43].

However, in most theoretical studies, with only a few exceptions (see [6,19,23,25,31,38]),

only the carrying capacity or a demographic characteristic of the species (one or two

parameters) are periodically forced. It is known that unimodal maps under period-2 forcing

in two model parameters routinely have up to three coexisting 2-cycles [19,31,38]. Our

results, on population models with three model parameters which are 2-periodically forced,

support these predictions. We prove that small 2-periodic fluctuations of both the carrying

capacity and two demographic characteristics of the species generate 2-cyclic population

oscillations. Our results predict both attenuance and resonance in 2-periodically forced,

three-parameter population models. As in Ref. [19], we derive a signature function, Rd, for

determining the response of discretely reproducing populations to periodic fluctuations of

their carrying capacity and two demographic characteristics. Rd is the sign of a weighted

sum of the relative strengths of the oscillations of the three parameters. Periodic

environments are deleterious for the population when Rd is negative, and favorable when Rd

is positive. A change in the relative strengths of the environmental and demographic

fluctuations can shift the system from attenuance to resonance and vice versa.

We compute Rd for the Smith–Slatkin model, and determine regions in parameter space

where its weights are positive and negative. Once the signs of the weights are known, Rd can

be used to decide whether in phase or out of phase forcing of the three parameters is

deleterious or beneficial for the population. When n ¼ 1 and mk is large in the Smith–Slatkin

model, a periodic environment is detrimental to the species when the fluctuations in the

carrying capacity are out of phase with the fluctuations in the demographic characteristics of

the species. However, when n . 2 and mk is large, these same fluctuations lead to an increase

in the average population biomass.

In constant environments, unimodal maps are capable of supporting 2-cycles. We prove

that small 2-periodic perturbations of a 2-cycle of the unforced three-parameter system

produce two (coexisting) 2-cycle populations. As in Ref. [19], we compute Rd for the

coexisting 2-cycles. Usually, one of the 2-cycles will be attenuant and the other will be

resonant. We use examples to illustrate attenuant and resonant 2-cycles that perturb from a 2-

cycle of the unforced classical Smith–Slatkin model.
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Our analysis and examples illustrate that, the response of populations to periodic

environments is a complex function of the period of the environments, the carrying

capacities, all the demographic characteristics of the species, and the type and nature of the

fluctuations.
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