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Abstract

The demographic dynamics are known to drive the disease dynam-
ics in constant environments [6-8]. In periodic environments, we prove
that the demographic dynamics do not always drive the disease dynam-
ics. We exhibit a chaotic attractor in an SIS epidemic model, where the
demograhic dynamics are asymptotically cyclic. Periodically forced SIS
epidemic models are known to exhibit multiple attractors [20]. We prove
that the basins of attraction of these coexisting attractors have infinitely
many components.
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1 Introduction
The role of periodic environments in determining the long-term dynamics of
populations has become an area of intensive study in both ecological and epi-
demiological research [4, 5, 10-15, 17-22, 25-33, 38-40, 42]. In a recent paper,
Franke and Yakubu studied the impact of seasonal factors on a discrete-time
SIS (susceptible-infected-susceptible) epidemic model [21]. For the periodically
forced SIS model, Franke and Yakubu, computed the epidemic threshold para-
meter, R0, and used it to prove that if R0 < 1 then the disease goes extinct
whereas if R0 > 1 then the disease is endemic and may even be cyclic. In
addition, Franke and Yakubu, used simulations to show that in periodic envi-
ronments, it is possible for the infective population to be on a chaotic attractor
while the demographic dynamics is non-chaotic [21]. For certain parameter val-
ues, the SIS model of Franke and Yakubu, a periodically forced hierarchical
model, has multiple attractors when R0 > 1. What is the nature and structure
of the basins of attraction of these coexisting attractors?
In this paper, we focus on deriving verifiable conditions that guarantee the

existence of cyclic or chaotic attractors in periodically forced hierarchical mod-
els. When the periodically forced SIS model exhibits multiple compact attrac-
tors, we prove that at least one of the basins of attraction of the coexisting
attractors has infinitely many components. That is, it is almost impossible to
accurately specify all the initial conditions that lead to each of the coexisting
attractors. This “uncertainty” phenomenon is known to occur in deterministic
models that exhibit sensitive dependence on initial conditions [7-9, 34-38].
The paper is organized as follows: In Section 2, we introduce the period-

ically forced SIS model of Franke and Yakubu. We review, in Section 3, the
results of Franke and Selgrade on “time-dependent” versus “time-independent”
dynamical systems. In Section 4, we use a general non-autonomous hierarchical
model to derive conditions for the existence of cyclic or chaotic attractors. The
periodically forced SIS model of Franke and Yakubu fits into our hierarchical
framework. Illustrative examples of cyclic and chaotic dynamics in SIS models
are provided in Section 5. In these examples, the SIS epidemic model is un-
der asymptotically cyclic demographic dynamics and infections are modeled as
Poisson processes [1-2, 7-9, 21]. Section 6 is on the basins of attraction of mul-
tiple (coexisting) compact attractors. Illustrative examples of cyclic attractors
with basins that have infinitely many components are demonstrated in Section
7, and concluding remarks are presented in Section 8.

2 SIS EpidemicModel in Periodic Environments
In this section, we introduce the main model, the periodically forced SIS epi-
demic model of Franke and Yakubu [21]. To do this, we first assume that the
dynamics of the total population size in generation t, denoted by N(t), are
governed by the p - periodic demographic equation

N(t+ 1) = f(t,N(t)) + γN(t), (1)
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where ∃ p ∈ {1, 2, 3, 4, ...} such that
f(t,N(t)) = f(t+ p,N(t)) ∀t ∈ Z+.

In Equation (1), f(t,N) ∈ C2(Z+ × R+,R+) models the birth or recruitment
process and γ ∈ (0, 1) is the constant “probability” of surviving per generation.
Franke and Yakubu studied Model (1) with the periodic constant recruitment
function

f(t,N(t)) = kt(1− γ),

and with the periodic Beverton-Holt recruitment function

f(t,N(t)) =
(1− γ)µktN(t)

(1− γ)kt + (µ− 1 + γ)N(t)
,

where the carrying capacity kt is p−periodic, kt+p = kt for all t ∈ Z+ [6-21, 34-
38, 42, 43]. Franke and Yakubu proved that, the periodically forced recruitment
functions generate globally attracting cycles in Model (1) [20, 21]. For reference,
we summarize their results in the following two theorems.

Theorem 1 [20, 21] Model (1) with f(t,N(t)) = kt(1 − γ) has a globally at-
tracting positive s - periodic cycle that starts at

x0 =
(1− γ)

¡
kp−1 + kp−2γ + ...+ k0γ

p−1¢
1− γp

,

where s divides p.

Theorem 2 [20, 21] Model (1) with f(t,N(t)) = (1−γ)µktN(t)
(1−γ)kt+(µ−1+γ)N(t) and µ >

1 has a globally attracting positive s - cycle, where s divides p.

By these two results, the total population is asymptotically periodic (bounded)
and lives on a cyclic attractor, denoted by {N0, N1, ..., Ns−1}, when the recruit-
ment function is either a periodic constant or the Beverton-Holt model.
Next, we build a simple SIS epidemic process on “top” of the periodic

demographic equation, Equation 1. As in [7-9, 21], we let S(t) denote the
population of susceptibles; I(t) denote the population of the infected, assumed
infectious; N(t) ≡ S(t) + I(t) denote the total population size at generation t,
N∞ denote the demographic steady state or attracting population and N0 the
initial point on a globally attracting cycle, when they exist. We assume that
individuals survive with constant probability γ each generation, and infected
individuals recover with constant probability (1− σ).
Let φ : [0,∞) → [0, 1] be a monotone convex probability function with

φ(0) = 1, φ0(x) < 0 and φ00(x) ≥ 0 for all x ∈ [0,∞). We assume that the
susceptible individuals become infected with nonlinear probability

¡
1− φ

¡
α I
N

¢¢
per generation, where the transmission constant α > 0. When infections are
modeled as Poisson processes, then φ

¡
α I
N

¢
= e−α

I
N [1, 2, 7-9, 21].

Our assumptions and notation lead to the following SIS epidemic model in
p - periodic environments:
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S(t+ 1) = f(t,N(t)) + γφ
³
α I(t)
N(t)

´
S(t) + γ(1− σ)I(t)

I(t+ 1) = γ
³
1− φ

³
α I(t)
N(t)

´´
S(t) + γσI(t)

 , (2)

where 0 < γ, σ < 1 and N(t) > 0. When the environment is constant,
f(t,N(t)) = f(N(t)) and Model (2) reduces to the model of Castillo-Chavez
and Yakubu [7-9]. The total population in generation t+1, S(t+1)+ I(t+1),
the sum of the two equations of Model (2), is the demographic equation (Equa-
tion 1).
Using the substitution S(t) = N(t) − I(t), the I-equation in Model (2)

becomes

I(t+ 1) = γ

µ
1− φ

µ
α
I(t)

N(t)

¶¶
(N(t)− I(t)) + γσI(t).

Let

FN (I) = γ

µ
1− φ

µ
α
I

N

¶¶
(N − I) + γσI.

When FN has a unique positive fixed point and critical point, we denote them
by IN and CN , respectively.

I(t+ 1) = FN(t)(I(t)),

and the set of iterates of the nonautonomous map FN(t) is the set of density
sequences generated by the infective equation.
Franke and Yakubu, used the map FN to study disease dynamics in the

periodic SIS epidemic model, Model (2). In particular, they obtained the basic
reproduction number,

R0 =
−γαφ0(0)
1− γσ

,

for the model. Franke and Yakubu proved that R0 < 1 implies disease extinc-
tion, whereas R0 > 1 implies disease persistence. In addition, they obtained
that it is possible for the uniformly persistent epidemic to live on a globally
attracting cycle and even a chaotic attractor. To study the nature of these at-
tractors and their basins of attraction, we need the following auxiliary result of
Franke and Yakubu on the properties of FN [21].

Lemma 3

FN (I) = γ

µ
1− φ

µ
α
I

N

¶¶
(N − I) + γσI
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satisfies the following conditions.

(a) F 0N (0) = −αγφ0 (0) + γσ and F 0N (N) > −1.
(b) FN (I) is concave down on [0, N ].
(c) FN (I) ≤ F 0N (0)I on [0,N ].
(d) If F 0N (0) > 1, then FN has a unique positive fixed point IN in [0, N ].
(e) Let ΨN (I) = I

N . Then F1(ΨN (I)) = ΨN (FN (I)). That is, ΨN is a
topological conjugacy between F1 and FN .
(f) If N0 < N1 and

¡−αγφ0 (0) + γσ
¢
> 1, then IN0 < IN1 where INi is

the positive fixed point of FNi in [0, Ni].
(g) If C1 exists, then CN = NC1.
(h) If N0 < N1, then FN0

(I) < FN1
(I) for all I ∈ (0,N0].

3 Review Of Time-Periodic Dynamical Systems
Our periodically forced SIS epidemic model is a time-periodic dynamical sys-
tem. To study the attractors generated by the model when R0 > 1, we use a
very general time-independent discrete-time dynamical system to motivate def-
initions of attractors for a time-periodic dynamical system. In [17], Franke and
Selgrade showed that the classical definitions from time-independent discrete
dynamical systems theory applied to autonomous systems lead to important
new concepts for the corresponding time-periodic dynamical system.
As in [17], let (X, d) be a metric space (usually an open subset of Rn). A

discrete p − periodic dynamical system is a finite sequence {F0, F1, F2,..., Fp−1}
of maps where Fi : X → X for i = 0, ..., p − 1. Extend this sequence to a
periodic infinite sequence by defining Fi = Fi mod p for i ≥ p . The trajectory
{x(t)} of a point x ∈ X is given by the t-fold composition of these p maps. That
is,

x(t) = Ft−1 · · · ◦ F2 ◦ F1 ◦ F0(x) .

Let
X = {0, 1, ..., p− 1} ×X.

For the metric on X , let
d((i, x), (j, y)) = δij + d(x, y),

where

δij =

½
0 if i = j,
1 otherwise.

For i ∈ {0, 1, ..., p− 1} and a point (i, x) ∈ X , define the autonomous map
F : X → X

by
F(i, x) = (i+ 1 mod p, Fi(x)).
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To simplify notation, the first component of ordered pairs in X will always be
taken mod p. X is the fibered cylinder for X and F is the cylinder map (see
FIG. 1).

FIG. 1: The fibered cylinder X and the cylinder map F corresponding to the
dynamical system {F0, F1, ..., Fp−1}.

X consists of p copies of X referred to as fibers (see FIG. 1). Open sets in
X are open sets in each copy of X. For each i ∈ {0, ..., p− 1},

Xi = {(i, x) : x ∈ X}
denotes the ith fiber. Furthermore, for every convergent sequence {in, yn} in X ,
there is an M > 0 such that if m,n > M then im = in. Consequently, all the
points past M are in the same fiber.
F is an autonomous dynamical system on X , and the standard definitions

for an invariant set, attractor and ω-limits apply. In [17], Franke and Selgrade
introduced similar concepts for time-periodic dynamical systems.
As in [17], define the projection πX : X → X by

πX(i, x) = x.

X is a finite number of copies of X, and the projection map is an open mapping.

Definition: A set Λ ⊂ X is invariant under the time-periodic dynamical
system if there is a set Γ ⊂ X with F(Γ) ⊂ Γ and πX(Γ) = Λ [17].

Trapping regions play an important role in understanding the long term
dynamics of many systems.

Definition: A set U ⊂ X is a trapping region for the time-periodic dy-
namical system if there is an open set U ⊂ X with compact closure U so that
F ¡U¢ ⊂ U and πX(U) = U [17]. U is called a corresponding trapping region
to U.

Γ =
∞T
n=0
Fn(U), a nonempty compact invariant set, is an attractor for F

whenever U is a trapping region. We capture this in the following precise defi-
nition.
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Definition: A set Λ ⊂ X is an attractor for the time-periodic dynamical
system if it has a trapping region U , with corresponding trapping region U ⊂ X ,
such that πX(Γ) = Λ where Γ =

∞T
n=0

Fn(U) [17].
By these definitions, an attractor Γ in X produces an attractor Λ in X for

the time-periodic dynamical system.

4 Compact Attractors
To study the nature and structure of compact attractors in our SIS epidemic
model, we assume that the p−periodic demographic equation (Equation 1) has
a globally attracting positive cycle {N0, N1, ..., Np−1}. Recall that, when the
recruitment function is either periodically constant or periodic Beverton-Holt,
the demographic equation is asymptotically cyclic (Theorems 1 and 2). If in
additionR0 > 1, Franke and Yakubu showed that it is possible for the uniformly
persistent epidemic to live on a cyclic or chaotic attractor.
To understand compact attractors for our epidemic process, we consider the

following general hierarchical system.

x(t+ 1) = g(t, x(t)), x(0) = x ∈ R+
y(t+ 1) = h(x(t), y(t)), (x(0), y(0)) = (x, y) ∈ V ⊆ R2+

¾
, (3)

where g : Z+ ×R+ → R+ and h : V → R1+ are smooth functions,

g(t+ k, x(t)) = g(t, x(t))

and
G(t, x, y) = (g(t, x), h(x, y))

is a k − periodic dynamical system on V .
In our SIS epidemic model, let

V = {(N, I) : I ≤ N}.
Then V is a connected set and for each N ∈ R+,

{I ∈ R+ : (N, I) ∈ V }
is a connected set. By letting

g(t,N(t)) = f(t,N(t)) + γN(t),

and

h(N(t), I(t)) = γ

µ
1− φ

µ
α
I(t)

N(t)

¶¶
(N(t)− I(t)) + γσI(t),

it is easy to see that the (N, I) system (our epidemic model),

N(t+ 1) = f(t,N(t)) + γN(t)

I(t+ 1) = γ
³
1− φ

³
α I(t)
N(t)

´´
(N(t)− I(t)) + γσI(t)

)
(4)
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is an example of Model (3).
Assume throughout this section that {x0, x1, ...xp−1} is a globally attracting

p− periodic orbit for the p− periodic dynamical system g(t,_), where each xi
is unique. Let

Vi = {y ∈ R+ : (xi, y) ∈ V }.
Then G(i, xi,_) = (g(i, xi), h(xi,_)) : Vi → V(i+1)mod p.
Let

H(y) = h(xp−1,h(xp−2, ...h(x1, h(x0, y))...)) : V0 → V0.

H is a one dimensional map formed by the composition of the h(xi, y) maps.
Next, we obtain that the p−periodic dynamical system, G, has an attractor

whenever the one dimensional map H has one, and vice versa.

Theorem 4 The p − periodic dynamical system G(t, x, y) = (g(t, x), h(x, y))
on V has a compact attractor if and only if H : V0 → V0 has a compact attractor.

Proof. Let A be a compact attractor for the p−periodic dynamical system
G(t, x, y) = (g(t, x), h(x, y)) on V and {x0, x1, ...xp−1} be the globally attracting
p− periodic orbit for the g(t,_) p− periodic dynamical system. Then, in the
fiber cylinder there is a compact attractor eA which projects onto A. Let U be
a compact trapping neighborhood of eA whose image under the fiber map G is
in its interior. Gp maps the 0th fiber into itself. In the x variable, this mapping
has x0 as a globally attracting fixed point. The projection of the part of U in
the 0th fiber onto the first coordinate produces a compact neighborhood Ux of
x0. Since x0 is a globally attracting fixed point,

∩∞n=0(g(p− 1, g(p− 2, ..., g(0, Ux)...))n = {x0}.
Now the dynamics of the x variable under G is determined by g(t, x). Thus,
the projection of eA = ∩∞n=0Gnp(U) onto the first coordinate is {x0, x1, ...xp−1}.
Hence, the part of eA in the 0th fiber can be viewed as a subset of {x0}×V0. Let

B = {y : (x0, y) is in eA and the 0th fiber}.
Since eA is invariant under G and {x0}×V0 is invariant under Gp, B is invariant
under H. Also, the projection of U ∩ ({x0} × V0) onto the second coordinate,
UB, gives a compact neighborhood of B such that H maps UB into its interior
and

B = ∩∞n=0Hn(UB).

Thus, B is a compact attractor for H and A =

({x0}×B)∪({x1}×h(x0, B)∪···∪({xp−1}×h(xp−2,h(xp−3, ...h(x1, h(x0, B))...)).
The other direction of this proof is easier. If B is a compact attractor

for H with UB a compact neighborhood which is mapped into its interior and
B = ∩∞n=0Hn(UB), then let A =

({x0}×B)∪({x1}×h(x0, B))∪···∪({xp−1}×h(xp−2,h(xp−3, ...h(x1, h(x0, B))...)).
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To get eA, think of each of the pieces in the union as coming from different fibers
in the fiber cylinder. Since {x0, x1, ...xp−1} is a globally attracting cycle, there
is a compact neighborhood Ux0 of x0 such that g(p− 1, g(p− 2, ..., g(0, Ux0)...))
is contained in the interior of Ux0 and

x0 = ∩∞n=0g(np− 1, g(np− 2, ..., g(0, Ux0)...)).
Let W0 = Ux0 × UB , which can be thought of as being in the 0th fiber. W0 is
a compact neighborhood of {x0} × B and Gp({x0} × UB) is in the interior of
W0. By continuity, there is a (possible) smaller compact neighborhood Ux0 of x0
such that Gp(W0) is in the interior ofW0 and ∩∞n=0Gnp(W0) = {x0}×B. G(W0)
contains {x1}×h(x0, B) but it may not be a neighborhood of it. The continuity
of G allows us to find a compact neighborhood W1 of G(W0) with the property
that Gp−1(W1) is in the interior ofW0. Proceeding in a similar way we construct
compact neighborhoods Wi of each {xi} × h(xi−1,h(xi−2, ...h(x1, h(x0, B))...),
which can be thought of as being in the ith fiber, such thatWi contains G(Wi−1)
and Gp−i(Wi) is in the interior of W0. ∪p−1i=0Wi is the desired attracting neigh-
borhood of eA. Thus, A is a compact attractor for the p − periodic dynamical
system G(t, x, y) on V.

The above proof gives a relationship between the structure of attractors for
G and H. We capture this relationship in the following two corollaries.

Corollary 5 If the p−periodic dynamical system G(t, x, y) = (g(t, x), h(x, y))
on V has a compact attractor A, then H : V0 → V0 has a compact attractor B
and A =

({x0}×B)∪({x1}×h(x0, B)∪···∪({xp−1}×h(xp−2,h(xp−3, ...h(x1, h(x0, B))...)).
Corollary 6 If H : V0 → V0 has a compact attractor B, then the p− periodic
dynamical system G(t, x, y) = (g(t, x), h(x, y)) on V has A =

({x0}×B)∪({x1}×h(x0, B)∪···∪({xp−1}×h(xp−2,h(xp−3, ...h(x1, h(x0, B))...))
as a compact attractor.

The cardinality of attractor A is p times the cardinality of attractor B.
Hence, by Theorem 4 the following result is immediate.

Corollary 7 The one parameter family of p− periodic dynamical systems

Gα(t, x, y) = (g(t, x), hα(x, y))

on V undergoes period-doubling bifurcation route to chaos if and only if

Hα(y) = hα(xp−1,hα(xp−2, ...hα(x1, hα(x0, y))...)) : V0 → V0

undergoes period-doubling bifurcation route to chaos.
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Chaotic attractors have positive Lyapunov exponents [3]. Next, we obtain
that the attractor for the p−periodic dynamical system, G, is chaotic whenever
that of the one dimensional map H is chaotic, and vice versa.

Theorem 8 If H : V0 → V0 has a compact attractor B with a positive Lyapunov
exponent then G has a compact attractor A with a positive Lyapunov exponent.

Proof. By Corollary 6, the compact attractor B for H corresponds to
a compact attractor A for G. Under G iterations, the first coordinate has a
globally attracting periodic orbit. Hence, the first coordinate cannot produce a
positive Lyapunov exponent. Under G iterations, the second coordinate on A
corresponds exactly to that of H on B. Thus, if H : V0 → V0 has a compact
attractor B with a positive Lyapunov exponent then G has a compact attractor
with a positive Lyapunov exponent.

5 Illustrative Examples: Cyclic and Chaotic At-
tractors

In this section, we use a specific example to illustrate the predicted cyclic and
chaotic attractors in our SIS epidemic model by Corollary 6 and Theorem 7,
where the demographic dynamics is cyclic and non-chaotic. In this example,
we consider our epidemic model with periodic constant recruitment function,
where infections are modeled as Poisson processes.

Example 9 Consider Model (4) with 2-periodic constant recruitment function

f(t,N) = kt(1− γ)

and

φ

µ
αI

N

¶
= e−

αI
N ,

where

0 ≤ α ≤ 400, γ = 0.44, σ = 0.002, k0 = 1 and k1 = 500.

With our choice of parameters, the 2-periodic demographic equation has a
globally attracting 2-cycle (Theorem 1). FIG. 2 shows period-doubling bifurca-
tion route to chaos in the infective population (H dynamics) as the transmission
constant α is varied between 0 and 400. By Corollary 6, the corresponding SIS
epidemic model undergoes period doubling bifurcation route to chaos, where
the demographic dynamics is non-chaotic.
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FIG. 2: Period-doubling bifurcation route to chaos in the infective population.
On the horizontal axis, 0 ≤ α ≤ 400 and on the vertical axis, 0 ≤ I ≤ 160.

FIG. 3 shows an attracting 24-cycle in the infective population (H dynam-
ics). For this choice of parameters, Corollary 7 and Sharkovskii’s Theorem
guarantee a chaotic attractor (Li-Yorke type [3]) in the corresponding epidemic
model.

FIG. 3: A period-24 cycle in the infective population. On the horizontal axis,
300 ≤ α ≤ 400 and on the vertical axis, 120 ≤ I ≤ 160.

By Corollary 7 and Theorem 8, the general pattern illustrated in FIG. 2 and
3 are not restricted to our choice of the periodic constant recruitment function,
but also follows when the periodic Beverton-Holt and Ricker models are used
[5, 7-9, 20, 21, 34-38, 42-43].

6 Multiple Attractors
Franke and Yakubu showed that Model (2) is capable of exhibiting multiple
(coexisting) compact attractors when the critical point of F1, C1, is less than
the fixed point of F1 (FN (I) = γ

¡
1− φ

¡
α I
N

¢¢
(N − I) + γσI). In this section,

we study the structure of the basins of attraction of these coexisting attractors.
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Throughout this section,

G(i, x, I) = (g(i, x), h(x, I)),

where
g(i, x) = f(i, x) + γx,

and

h(x, I) = γ

µ
1− φ

µ
α
I

x

¶¶
(x− I) + γσI.

Furthermore, we assume throughout the section that g(t, x) is a positive, in-
creasing homeomorphism for each t with a globally attracting positive period−p
point, denoted by {N0,N1, ..., Np−1}. Recall that when the recruitment func-
tion f(t, x) is either a periodic constant or the Beverton-Holt model, then g(t, x)
is a positive, increasing homeomorphism with a globally attracting positive
periodic orbit (Theorem 1 and 2).
Next, we obtain a closed interval on which our composition map,

Fxi ◦ · · · ◦ Fx1 ◦ Fx0
is increasing.

Theorem 10 If C1 is less than the positive fixed point of F1 and {x0, x1, ...} is
an orbit of the p− periodic dynamical system

g(i, x) = f(i, x) + γx,

then
Fxi ◦ · · · ◦ Fx1 ◦ Fx0 : [0, x0]→ R+

has a maximum point Ci(x0) smaller than its smallest positive fixed point and
Fxi ◦ · · · ◦ Fx1 ◦ Fx0 is increasing on [0, Ci(x0)]. Moreover, Ci is a continuous
function.

Proof. Since {x0, x1, ...} is an orbit of the p− periodic dynamical system

g(i, x) = f(i, x) + γx,

Fxj ([0, xj ]) ⊂ [0, xj+1] and the domain of Fxi ◦ · · · ◦ Fx1 ◦ Fx0 is [0, x0]. For
each xj , Fxj is topologically conjugate to F1 (Lemma 3). So Cxj is less than
the positive fixed point of Fxj . F

0
xj > 0 on [0, Cx

j
), F 0xj < 0 on (Cxj , xj ] and

Fxj (0) = 0. Furthermore, Fxj (x) > x on (0, Cxj ] and F 0xj (0) > 1. Thus,

Fxi ◦ · · · ◦ Fx1 ◦ Fx0(0) = 0
and

(Fxi ◦ · · · ◦ Fx1 ◦ Fx0)0 (0) > 1.
The ray I = x0C1 = Cx0 satisfies the conditions of the theorem for the case of
one function Fx0 .
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For an induction proof we assume that the composition map Fxi◦···◦Fx1◦Fx0
is increasing on some interval [0, Ci(x0)], there are no positive fixed points on
this interval, and Ci(x0) is a maximum point for Fxi ◦ · · · ◦ Fx1 ◦ Fx0 on its
domain [0, x0]. There are two cases to consider depending on whether

Fxi ◦ · · · ◦ Fx1 ◦ Fx0(Ci(x0)) < Cxi+1

or
Fxi ◦ · · · ◦ Fx1 ◦ Fx0(Ci(x0)) ≥ Cxi+1 .

In the first case, Fxi+1 is an increasing homeomorphism with Fxi+1(x) > x on
(0, Fxi ◦ · · · ◦ Fx1 ◦ Fx0(Ci(x0))] . Hence,

Fxi+1 ◦ · · · ◦ Fx1 ◦ Fx0(x) > x

on (0, Ci(x0)], Fxi+1 ◦ · · ·◦Fx1 ◦Fx0 is increasing on this interval and takes on its
maximum value at Ci(x0). Let Ci+1(x0) = Ci(x0). Note that this construction
is continuous on some neighborhood of x0.
When

Fxi ◦ · · · ◦ Fx1 ◦ Fx0(Ci(x0)) ≥ Cxi+1 ,

Fxi ◦ · · · ◦ Fx1 ◦ Fx0 maps a unique point Ci+1(x0) ∈ (0, Ci(x0)] onto Cxi+1

(Intermediate Value Theorem). Cxi+1 is the maximum point for Fxi+1 . Hence,
Ci+1 is a maximum point for Fxi+1 ◦ · · · ◦Fx1 ◦Fx0 . Since Fxi ◦ · · · ◦Fx1 ◦Fx0 is
increasing on (0, Ci+1] and Fxi+1 is increasing on (0, Cxi+1 ], Fxi+1 ◦ · · ·◦Fx1 ◦Fx0
is increasing on (0, Ci+1]. Similarly, Fxi+1 ◦ · · ·◦Fx1 ◦Fx0(x) > x on this interval.
Thus,

Fxi+1 ◦ · · · ◦ Fx1 ◦ Fx0 : [0, x0]→ R+

has a maximum point Ci+1(x0) smaller than its smallest positive fixed point.
To get the continuity of Ci+1 in this case, first consider when Fxi ◦ · · · ◦ Fx1 ◦
Fx0(Ci(x0)) > Cxi+1 . Then by continuity of the dynamical system, there is a
neighborhood U of x0 such that if y0 ∈ U then

Fyi ◦ · · · ◦ Fy1 ◦ Fy0(Ci(y0)) > Cyi+1 .

Since g(t, x) is a homeomorphism for each t, our dynamical system preserves
vertical lines and no two vertical lines go to the same vertical line. Thus,

G(i, (G(i− 1, · · ·, (G(0, x, I)) · ··))

is a homeomorphism on {(x, I) ∈ V : I ≤ Ci(x)}. Thus, the inverse image of
the ray I = x0C1 = Cx0 intersected with a small neighborhood of (xi+1, Cxi+1)
is a continuous function of x.
The remaining case is when Fxi ◦ · · · ◦ Fx1 ◦ Fx0(Ci(x0)) = Cxi+1 . In this

case,
Ci(x0) = Ci+1(x0) = Cxi+1 .
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For y close to x0, Ci+1(y) can come in either of the two ways. First it can be
on the ray I = xC1 = Cx, which keeps you close to the point (x0, Cxi+1), or it
comes from the inverse of the homeomorphism

G(i, (G(i− 1, · · ·, (G(0, x, I)) · ··)),

which also must keep you close to (x0, Cxi+1) by continuity. Thus, in either case
we obtain the continuity of Ci+1 at x0.This completes the induction proof.

In Corollary 11 and Lemma 12, we obtain regions on which the composition
map

G(i, (G(i− 1, · · ·, (G(0, x, I)) · ··))
is a homeomorphism.

Corollary 11 If C1 is less than the positive fixed point of F1, then

G(i, (G(i− 1, · · ·, (G(0, x, I)) · ··))

is a homeomorphism on {(x, I) ∈ V : I ≤ Ci(x)}.

The proof of Corollary 11 is contained in that of Theorem 10.

Lemma 12 If C1 is less than the positive fixed point of F1, then there is an
L > 0 such that

G(p− 1, (G(p− 2, · · ·, (G(0, x, I)) · ··))
is a homeomorphism on {(x, I) ∈ V : x ≤ L and I ≥ Cp−1(x)}.

Proof. From the proof of Theorem 10, C0(x) = Cx. g(0, 0) > 0 soG(0, 0, 0) =
(g(0, 0), 0) moves the origin to a point of the positive x− axis. Since this axis
is invariant,

G(p− 1, (G(p− 2, · · ·, (G(0, 0, 0)) · ··))
is also on the positive x − axis. Continuity gives an L > 0 such that for each
i ∈ {0, 1, 2, · · ·, p − 1}, G(i − 1, (G(i − 2, · · ·, (G(0, x, I)) · ··)) is below the ray
of critical points I = Cx when (x, I) ∈ {(x, I) ∈ V : x ≤ L }. Thus, for
i ∈ {0, 1, 2, · · ·, p − 1}, Cp−1(x) = Cx for 0 < x ≤ L. Consequently, the only
critical points of G(p − 1, (G(p − 2, · · ·, (G(0, x, I)) · ··)) on {(x, I) ∈ V : x ≤
L and I ≥ Cp−1(x)} is the critical ray I = Cx. G(0, x, I) has the critical
points and the following G(i, x, I) are homeomorphisms on the image. On each
fixed vertical line in this set, G(0, x, I) increases to the critical point and then
decreases. Hence, G(p−1, (G(p−2, · · ·, (G(0, x, I)) · ··)) is a homeomorphism on
{(x, I) ∈ V : x ≤ L and I ≥ Cp−1(x) = Cx} as well as on {(x, I) ∈ V : x ≤ L
and I ≤ Cp−1(x) = Cx}.
Next, we establish that in our epidemic model, Model (4), the point (N0, 0)

is not in the basin of attraction of any set of coexisting attractors.
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Lemma 13 If Model (4) has multiple disjoint compact attractors and C1 is less
than the positive fixed point of F1, then the point (N0, 0) is not in the basin of
attraction of these multiple attractors.

Proof. {0} is a repelling fixed point of FNp−1 ◦ · · · ◦ FN1
◦ FN0

: V0 → V0.
By Theorem 10, any neighborhood of {0} eventually gets mapped onto the
entire range. Hence, every neighborhood of {0} contains points of all basins of
attraction. Thus (N0, 0) cannot be in any basin of attraction of Model (4).

In [19], Franke and Yakubu obtained that periodically forced models can
exhibit multiple (coexisting) attractors via cusp bifurcations, where the corre-
sponding unforced models exhibit no multiple attractors. When our SIS epi-
demic model has coexisting attractors, then at least one of the basins of these
attractors has infinitely many components. That is, the basins of attraction are
in the cylinder space and a component of the basins is a subset of one of the
fibers. We capture this in the following result.

Theorem 14 If Model (4) has multiple disjoint compact attractors and C1 is
less than the positive fixed point of F1, then at least one of the basins of attraction
has infinitely many components.

Proof. We will show that the 0th fiber contains infinitely many components.
By Corollary 5, to each attractor Ai of Model (4) there is a corresponding
attractor Bi of the composition map

FNp−1 ◦ · · · ◦ FN1
◦ FN0

: V0 → V0.

So FNp−1 ◦ · · · ◦ FN1
◦ FN0

has multiple disjoint attractors whenever Model (4)
has multiple disjoint attractors. By Lemma 13, {0} is not in any of the Bi

basins of attraction. Let UB be the basin of attraction for an attractor B and
U0B be a connected component of UB that contains a point of B. Then U0B is
a relatively open set in [0, N0] and U0Bi ∩ U0Bj = ∅ whenever Bi ∩ Bj = ∅. By
Theorem 10, there is an interval, [0, C], on which FNp−1 ◦ · · · ◦ FN1

◦ FN0
is a

homeomorphism onto the range. Thus, there is a connected, relatively open
subset U1Bi of [0, C] which is mapped onto

U0Bi ∩ FNp−1 ◦ · · · ◦ FN1
◦ FN0

([0, C])

and hence is in the basin of attraction for Bi. Note that U1Bi ∩ U1Bj = ∅ when
Bi∩Bj = ∅. Since FNp−1 ◦ · · ·◦FN1

◦FN0
is an increasing homeomorphism with

FNp−1 ◦ · · ·◦FN1
◦FN0

(x) > x from (0, C] onto the range, there is a sequence of

connected, relatively open subsets Uk
Bi
of (0, C] which are mapped onto Uk−1

Bi
and hence are in the basin of attraction for Bi. Since {0} is repelling, this
sequence of sets must limit on {0}. Similarly there is a sequence of connected,
relatively open subsets Uk

Bj
of [0, C] which are mapped onto Uk−1

Bj
and hence

are in the basin of attraction for Bj . This sequence must also limit on {0}.
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Furthermore the union of the Uk
Bi
sets are disjoint from the union of the Uk

Bj
sets. Hence the basins of attraction for each Bj has an infinite number of
components.
Let UA be the basin of attraction for an attractor A and U0A be the connected

component of UA that contains U0B. Here we are viewing the V0 as being a
vertical line segment in the 0th fiber of the cylinder space with first coordinate
N0. Then U0A is a relatively open set in the 0

th fiber of the cylinder space and
U0Ai ∩ U0Aj = ∅ whenever Ai ∩Aj = ∅. By Corollary 11,

G(p− 1, (G(p− 2, · · ·, (G(0, x, I)) · ··))
is a homeomorphism on the set in the 0th fiber of the cylinder space given
by W = {(x, I) ∈ V : I ≤ Ci(x)} with range equal to the entire range of
G(p − 1, (G(p − 2, · · ·, (G(0, x, I)) · ··)) in the 0th fiber of the cylinder space.
Thus, there is a connected relatively open subset U1Ai of W which is mapped
onto a connected component of

U0Ai ∩G(p− 1, (G(p− 2, · · ·, (G(0,W )) · ··))
which contains a point of A. Hence U1Ai is in the basin of attraction for Ai and
contains an open neighborhood of some point with first coordinate N0. Note
that U1Ai ∩ U1Aj = ∅ when Ai ∩ Aj = ∅. There is a sequence of connected
relatively open subsets Uk

Ai
of W which are mapped onto Uk−1

Ai
and hence are

in the basin of attraction for Ai. Similarly there is a sequence of connected
relatively open subsets Uk

Aj
of W which are mapped onto Uk−1

Aj
and hence are

in the basin of attraction for Aj .
Note that ¡∪∞k=1Uk

Ai

¢ ∩ ³∪∞k=1Uk
Aj

´
= ∅

when Ai∩Aj = ∅. The intersection of V0 with
¡∪∞k=1Uk

Ai

¢
and

³
∪∞k=1Uk

Aj

´
each

has an infinite number of components as we saw in the first paragraph of this
proof. The question is to determine if enough of these components can connect
by going to the left or right to have only a finite numbers for components for
one of the basins of attraction.
We first show that this cannot happen by going to the left. Since U1Ai con-

tains an open neighborhood of some point with first coordinate N0, it contains
a horizontal line segment Hi containing this point as its midpoint. The inverse
image H1

i of Hi under G(p − 1, (G(p − 2, · · ·, (G(0, x, I)) · ··)) restricted to W ,
is the graph of a continuous function, since vertical line segments are sent to
vertical line segments. Since each g(t, x) is a homeomorphism with a globally
attracting periodic point, the horizontal expanse of H1

i is larger than that of
Hi. The maximum of H1

i is smaller than that of Hi because

Fxj ◦ · · · ◦ Fx1 ◦ Fx0(x) > x

on (0, Cj(x0)]. If H1
i is not a subset of the of the image of

G(p− 1, (G(p− 2, · · ·, (G(0, x, I)) · ··))
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restricted toW , replace it with the component ofH1
i intersected with this image

that contains a point of V0. The horizontal expanse of this (possibly smaller)
H1
i is larger than that of Hi. Note that H1

i ⊂ U1Ai . By repeating this process
successively, we produce a sequence Hk

i of connected sets which are the graphs
of continuous functions. The domains of these functions continue to grow and
the maximum height continues to shrink. On the left, compactness gives that
the maximum height goes to 0. By Lemma 12 there is an L > 0 such that

G(p− 1, (G(p− 2, · · ·, (G(0, x, I)) · ··))
is a homeomorphism on {(x, I) ∈ V : x ≤ L and I ≥ Cp−1(x) = Cx}. Since
the maximum of the Hk

i to the left of N0 goes to 0, there is a k such that this
maximum is less than the second coordinate of

G(p− 1, (G(p− 2, · · ·, (G(0, L, L)) · ··)).
Thus, if k is large enough the left endpoint of Hk

i is on the image of the graph
of Cp−1 under

G(p− 1, (G(p− 2, · · ·, (G(0, x, I)) · ··))
and it intersects the image of the diagonal at a point in the image of {(x, I) ∈
V : x ≤ L and I ≥ Cp−1(x) = Cx}. Thus, the inverse image of Hk

i contains a
connected curve starting on the diagonal and containing Hk+1

i . Since this same
construction can be done starting with attractor Aj , the basins of attraction
for each Ai intersected with {(x, I) ∈ V : x ≤ N0} have an infinite number of
components. Thus, we do not get a finite number of components by going to
the left.
A different outcome is possible by going to the right. Assume that the inverse

image of Hn
i , H

m
i and Hk

j contain curves connecting points on the diagonal to
points with first component N0 and that the curve corresponding to Hk

j is
between the other two curves. Also assume that the curves coming form Hn

i

and Hm
i are in the same component of the basin of attraction of Ai. Since

open connected subsets of locally path connected spaces are path connected,
there is a path that must go to the right that connects these two curves. This
gives us a path from the diagonal back to the diagonal that surrounds the third
curve. Thus, the basin of attraction of Aj has a component that is surrounded
by this curve. For the basin of attraction of Ai to have only a finite number of
components, this must happen an infinite number of times. Hence, if Ai has
finitely many components then Aj must have an infinite number of components.

7 Illustrative Examples: Multiple Attractors
Here, we use a specific example to demonstrate coexisting attractors with basins
of attraction having infinitely many components. As in Example 9, we consider
Model (4) with periodic constant recruitment function, where infections are
modeled as Poisson processes.
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Example 15 Consider Model (4) with 4− periodic constant recruitment func-
tion

f(t,N) = kt(1− γ),

and

φ

µ
αI

N

¶
= e−

αI
N ,

where

α = 75, γ = 0.4, σ = 0.02, k0 = 1, k1 = 200, k2 = 1, and k3 = 210.

With our choice of parameters, the 4-periodic demographic equation has a
globally attracting 4-cycle (Theorem 1). FIG. 4 shows that Example 15 has two
coexisting 4-cycle attractors (multiple attractors) at

B = {(60.32, 55.47)→ (144.1, 2.385)→ (58.25, 40.32)→ 149.3, 7.493)}

and

R = {(60.32, 39.95)→ (144.1, 8.467)→ (58.25, 53.67)→ 149.3, 2.262)}.

FIG. 4: Two coexisting 4-cycle attractors. On the horizaontal axis,
0 ≤ N ≤ 175, and on the vertical axis, 0 ≤ I ≤ 75.
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FIG. 5: Basins of the two coexisting 4-cycle attractors in Example 15, where
the red and blue regions are respectively the basins of attraction of attractors
R and B. On the horizaontal axis, 0 ≤ N ≤ 100, and on the vertical axis,

0 ≤ I ≤ 100.

FIG. 5, 6 and 7 show the basins of attraction of the two coexisting 4-cycle
attractors in Example 15 (or FIG. 4), where the red and blue regions are re-
spectively the basins of attraction of the 4-cycle attractors R and B.

FIG. 6: Zoom of FIG. 5 around the origin by a factor of 1000, where the red
and blue regions are respectively the basins of attraction of attractors R and
B. On the horizaontal axis, 0 ≤ N ≤ 0.1, and on the vertical axis, 0 ≤ I ≤ 0.1.
Two demonstrate that the basins of the attractors have infinitely many com-
ponents, we zoom into the origin of FIG. 5 by a factor 1000 to obtain FIG. 6.
Similarly, we obtain FIG. 7 by zooming into the origin of FIG. 6 by a factor of
1000. As predicted by Theorem 14, our sequence of zooms produces pictures
with the colors switching back and forth. The edge of the diagonal changes color
back and forth as you zoom into the origin.
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FIG. 7: Zoom of FIG. 6 around the origin by a factor of 1000, where the red
and blue regions are respectively the basins of attraction of attractors R and

B. On the horizaontal axis, 0 ≤ N ≤ 0.0001, and on the vertical axis,
0 ≤ I ≤ 0.0001.

FIG. 8, a zoom of FIG. 5 away from the origin, shows that the blue basin of
attraction has an end; making the red basin a connected set.

FIG. 8: Blue basin ends and red basin is connected. On the horizaontal axis,
2000 ≤ N ≤ 2600, and on the vertical axis, 2000 ≤ I ≤ 2600.

As illustrated by Theorem 14, the general pattern illustrated in FIG. 5-8 are
not restricted to our choice of the periodic constant recruitment function, but
also follows when the periodic Beverton-Holt model is used, and certainly hold
for any increasing homeomorphism with a globally attracting positive periodic
orbit.

8 Conclusion
The periodically forced SIS model of Franke and Yakubu has illustrated several
important principles, both concerning the role of periodic environments, and the
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complexity of the interaction between infectives and susceptibles in discrete-time
models [5, 20-24, 39-41].
Castillo-Chavez and Yakubu obtained that in constant environments the

demographic equation drives the disease dynamics [7-9]. That is, when the
demographic dynamics are cyclic and non-chaotic, then the disease dynamics are
cycle and non-chaotic. Similarly, when the demographic dynamics are chaotic,
then the disease dynamics are chaotic. In the current paper, we prove that
in periodic environments it is possible for the infective population to be on a
chaotic attractor while the demographic dynamics are cyclic and nonchaotic.
That is, in periodic environments, the demographic dynamics do not drive the
disease dynamics [21].
In constant environments, simple SIS models do not exhibit multiple attrac-

tors [1-5, 7-9, 20, 21]. However, in periodic environments the corresponding
simple models can have multiple attractors with basins of attraction having in-
finitely many components. In this situation, it is impossible to make accurate
predictions of the final outcome of all initial population sizes despite the fact
that R0 > 1 and the disease is endemic [21]. This extreme dependence of the
long-term behavior on initial population sizes may have serious implications on
the persistence and control of infectious diseases.
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