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Abstract

We use a periodically forced density-dependent compensatory Leslie
model to study the combined effects of environmental fluctuations and
age-structure on pioneer populations. In constant environments, the mod-
els have globally attracting positive fixed points. However, with the advent
of periodic forcing, the models have globally attracting cycles. We derive
conditions under which the cycle is attenuant, resonant, and neither atten-
uant nor resonant. These results show that the response of age-structured
populations to environmental fluctuations is a complex function of the
compensatory mechanisms at different life-history stages, the fertile age
classes and the period of the environment.
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1 Introduction

Environmental fluctuations are common in nature, and they play an important
role in regulating populations. Cyclic fluctuations, like the cycles of the sea-
sons, and the light and dark periods within a day, are caused by annual or daily
fluctuations in the physical environment [1, 5, 26, 43, 46]. Many studies have
focused on whether or not a population is adversely affected by a periodic en-
vironment relative to a constant environment [3, 4, 6, 8, 11-14, 18-20, 30-32].
Under what biological conditions is the average of the resulting oscillations in
the periodic environment less (greater) than the average of the carrying capacity
in a corresponding constant environment? For example, the scalar continuous-
time logistic differential equation and the discrete-time Beverton-Holt popu-
lation model without age-structure have been used to show a decrease in the
average population size with the advent of periodic forcing (attenuance). These
results are known to be model-dependent [8, 24, 25]. The experiments of Jillson
with a periodic food supply resulted in oscillations in population size of the
flour beetle (Tribolium). In the alternating habitat, the total population num-
bers observed were more than twice those in the constant habitat even though
the average flour volume was the same in both environments [29] (resonance).
Henson and Cushing [27], Costantino et al. [5] and Henson et al. [26] have
since explained Jillson’s observations. In [5, 26, 27, 29], mathematical analysis
and laboratory experiments were used to demonstrate that it is possible for a
periodic environment to be advantageous for a population.

In this paper, we use a periodically forced nonlinear density-dependent Leslie
model to study the combined effects of environmental fluctuations and age-
structure on population sizes. Since the introduction of the Leslie matrix
discrete-time models in the classic work of Leslie [34, 35] and Lewis [37], non-
linear Leslie models have been extensively used in a variety of studies. Some
examples include Caswell [2], Cushing [7], Desharnais and Cohen [9], Franke
and Yakubu [20], Fisher and Goh [16], Guckenheimer et al. [21], Hassell and
Comins [22], Henson [25], Horwood and Shepherd [28], Levin and Goodyear
[36], Kulenovic and Yakubu [33], North [44], Pennycuick [45], Travis et al. [49],
and Wikan [50].

The response of any population to cyclic fluctuations depends on the nature
and type of compensatory mechanisms at different life-history stages, the fer-
tile age classes, and the period of the environment. Using population models
without age-structure, Cushing showed that populations under compensatory
dynamics are adversely affected by cyclic fluctuations of period 2 [8]. In this
paper, we focus on the implications of compensatory dynamics on average pop-
ulation biomass in periodically forced Leslie-type age-structured models. We
use a mathematical theorem to show that a population governed by an n-age
class compensatory Leslie model has a globally attracting positive cycle. The
population is neither diminished nor enhanced by a p−periodic environment
when the least common multiple of the fertile age classes is a multiple of p and
the oldest age class is pioneer. When the least common multiple of the fertile
age classes is not a multiple of p, and the population is governed by the periodic
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Beverton-Holt model with fluctuating carrying capacity and non-fluctuating in-
trinsic growth rate, then the population is adversely affected by the periodic
environment. This result is a generalization of that of Cushing and Henson
[8], Elaydi and Sacker [11-14], Kocic [30] and Kon [31, 32] to include popula-
tion models with age-structure. However, the population can be enhanced via
resonance cycles when the periodic Beverton-Holt model has both fluctuating
carrying capacity and fluctuating intrinsic growth rate.

Section 2 reviews periodically forced single species closed population models
without age-structure. The periodic Beverton-Holt is an example of the general
model [8, 11-14, 20, 30, 31, 32]. Precise mathematical definitions of attenuant
and resonant cycles for population models without age-structure are introduced
in Section 2. In Section 3, we introduce the main model, a periodically forced,
density-dependent, n-age class Leslie model. The corresponding autonomous n-
age class Leslie model in constant environment is also introduced in the section.
Mathematical definitions of pioneer function as well as attenuant and resonant
cycles for population models with age-structure are stated in Section 3.

In constant environments, single species compensatory models without age-
structure have a globally attracting fixed point [8, 10, 15, 22]. However, in
cyclic environments, the models have a globally attracting periodic orbit [8,
11-14, 17, 30, 31, 32]. In Section 4, we use the monotone systems theorem of
Smith [48] to show that the autonomous Leslie model has a globally attracting,
positive equilibrium population vector (carrying capacity) when the contribution
to the next generation from each fertile age class is a nonlinear function with
compensatory dynamics, and the oldest age class is pioneer. We show, in Section
5, that the periodically forced n-age class Leslie models with compensatory
dynamics have a globally attracting periodic orbit. That is, in both constant and
periodically varying environments, age-structure has no impact on population
models under compensatory dynamics. Conditions under which the periodic
orbit is neither attenuant nor resonant are derived in Section 6. Sections 7 and
8 highlight attenuant and resonant cycles in periodically forced Leslie models,
respectively. The implications of our results are discussed in Section 9.

2 Periodic PopulationModelsWithout Age-Structure

Periodically forced, single species, ecological models with no age-structure of
the general form

x(t+ 1) = x(t)g(t, x(t)) (1)

have been used to study the long-term dynamics of discretely reproducing pop-
ulations in periodically varying environments, where x(t) is the population size
at generation t [8, 17, 18-20, 38]. The C2 map

g : Z+ × [0,∞)→ (0,∞)

is the per capita growth rate, where there exists a smallest positive integer p
satisfying g(t + p, x) = g(t, x) for each t ∈ {0, 1, 2, ...}. That is, g is periodic
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with period p, which we assume is larger than 1.
The p−periodic (nonautonomous) Beverton-Holt model,

x(t+ 1) =
µKtx(t)

Kt + (µ− 1)x(t)
, (2)

is an example of Model (1), where Kt+p = Kt and µ > 1. The coefficient µ is the
intrinsic growth rate of the species, and the positive periodic carrying capacity
Kt is a characteristic of the fluctuating habitat or environment.

In the classical autonomous Beverton-Holt, Kt is a constant (that is, Kt ≡
K). The equilibrium population sizes of the model are 0 andK. In the Beverton-
Holt model, every positive initial population size converges monotonically to the
unique positive equilibrium point x∞ = K [8].

To understand the long-term dynamics of Model (1), we introduce the fol-
lowing sequence of autonomous models:

G0(x) = xg(0, x),
G1(x) = xg(1, x),

... =
...,

Gp−1(x) = xg(p− 1, x).

Notice that

G0(x(0)) = x(1), G1(x(1)) = x(2), ..., Gp−1(x(p− 1)) = x(p),

whenever the sequence of population densities {x(0), x(1), ...} are generated by
Model (1). Each Gi is an autonomous model that describes the population
dynamics of a single species in a constant environment. The set of iterates of
the p− periodic dynamical system,

{G0, G1, ..., Gp−1},

is equivalent to the set of density sequences generated by Model (1). In many
ecological models, theGi have globally attracting fixed points called the carrying
capacities.

In recent papers, Cushing and Henson [5], Elaydi and Sacker [11-14], Franke
and Yakubu [18-20], Kocic [30] and Kon [31, 32] studied the relationship between
the long-term dynamics of the p − periodic dynamical system, Model (1), and
the average of the carrying capacities of the Gi.

Definition 1 A periodic orbit of Model (1) is attenuant (resonant) if its average
value is less (greater) than the average of the carrying capacities of the Gi.

Using monotone 2 − periodic nonlinear difference equations models with-
out age-structure, Cushing and Henson derived conditions for the existence of
a globally attracting attenuant cycle [8]. In particular, Cushing and Henson
showed that in periodic environments population sizes are diminished via atten-
uance whenever the single species is governed by the Beverton-Holt model. In
this paper, we show that in age-structured models, periodic environments are
not always deleterious. That is, age-structure combined with periodicity can
have a dramatic impact on the ultimate outcome of population models.
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3 Periodically Forced Leslie Model with Density

Dependent Fecundity Functions

To study the combined effects of age-structure and periodic environments on
population sizes, we introduce a general age-structured, single species, nonau-
tonomous ecological model with s age classes. The model is of the form

x1(t+ 1) =
∑s
i=1 xi(t)gi(t, xi(t))

x2(t+ 1) = λ1x1(t)
... =

...
xs(t+ 1) = λs−1xs−1(t)




, (3)

where for each i ∈ {1, 2, ..., s}, xi(t) is the population size of the ith age class
at time t and λi ∈ (0, 1) is the i

th age class constant survival “probability” per
generation. The C2 map gi : Z+ × [0,∞) → [0,∞) is the fecundity of the ith

age class and there exists a smallest positive integer p satisfying gi(t+ p, xi) =
gi(t, xi) for each i and each t ∈ {0, 1, 2, ...}. Model (3) is a periodic, density-
dependent, Leslie model [2, 34, 35, 37]. In this model, all age classes may
reproduce. An age class i is fertile if gi(t, xi) > 0 at some point (t, xi) ∈
Z+ × [0,∞) .

If System (3) has no fertile age classes, then the species goes extinct in s
generations. Consequently, we assume that there is always at least one fertile
age class. As in the periodic Beverton-Holt model, we assume that a fertile age
class remains fertile at all points, that is gi : Z+ × [0,∞)→ (0,∞). In a recent
paper [20], Franke and Yakubu studied the combined effects of age-structure
and periodic environments on population models with only one fertile age class;
the oldest age class.

A rescaling of the age classes can be performed to effectively replace the λi
with 1 giving the model

x1(t+ 1) =
∑s
i=1 xi(t)gi(t, xi(t))

x2(t+ 1) = x1(t)
... =

...
xs(t+ 1) = xs−1(t)




, (4)

which we call the p−periodic Leslie model. To prevent population explosion,
we assume that lim

x→∞
xgi(t, x) exists. In Model (4), the contribution to the first

age class of generation (t+ 1) by the ith age class is the function fi(t, xi(t)) =
xi(t)gi(t, xi(t)). Note that fi(t+ p, ·) = fi(t, ·).

Definition 2 Whenever gs(t, 0) > 1 for all t, we say that the contribution to
the next generation from the oldest age class is a pioneer function [20].

Definition 3 The contribution of the ith age class to the next generation, fi,

is under compensatory dynamics whenever ∂fi
∂xi
(t, xi) > 0,

∂2fi
∂x2i

(t, xi) < 0 for all

(t, xi) ∈ Z+ × [0,∞), and lim
xi→∞

fi(t, xi) exists for all t ∈ Z+ [33, 42].
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For example, when

fi(t, xi(t)) =
µKtxi(t)

Kt + (µ− 1)xi(t)
(p− periodic Beverton-Holt),

the contribution of the ith age class to the next generation is under compensatory
dynamics and the function fi is a bounded pioneer function.

When the environment is constant, the p−periodic Leslie model becomes

x1(t+ 1) =
∑s
i=1 xi(t)gi(xi(t))

x2(t+ 1) = x1(t)
... =

...
xs(t+ 1) = xs−1(t)




, (5)

where the time dependent fecundity elements gi(t, xi) reduce to the C2 maps
gi : [0,∞)→ (0,∞) or gi ≡ 0, fertile or non-fertile.

In Model (5), the contribution to the first age class of generation (t+ 1) by
the ith age class is fi(xi(t)) = xi(t)gi(xi(t)). Using Definition (2), when gi is
time independent and gs(0) > 1, the contribution to the next generation from
the oldest age class is a pioneer function [47]. Also, using Definition (3), when gi
is time independent the contribution of the ith age class to the next generation,
fi, is under compensatory dynamics whenever f ′i(xi) > 0 and f

′′

i (xi) < 0 for all
xi ∈ [0,∞); where lim

xi→∞
fi(xi) exists.

When the dynamics is compensatory, population models in constant envi-
ronments without age-structure have a globally attracting fixed point and no
population size “overshoots” the fixed point under iteration (monotone dynam-
ics) [51, 52, 53]. For example, when

fi(xi) =
µKxi

K + (µ− 1)xi
(Beverton-Holt),

the contribution of the ith age class to the next generation is under compensatory
dynamics (see [23, 39-41] for more examples of single species models in constant
environments).

An equilibrium of Model (5) has all age class population sizes equal. This
common value of a globally attracting equilibrium vector of the age-structured
non-periodic model is called the carrying capacity. Model (5) is a discrete-time
autonomous dynamical system from R

s
+ to Rs+, which we denote by F.

For each J ∈ {0, 1, ..., p− 1}, define FJ : Rs+ → R
s
+ by

FJ(x1, x2,...xs) =

(
s∑

i=1

xigi(J, xi), x1,x2,..., xs−1

)
.

The nonautonomous p−periodic Leslie model with density-dependent fecundity
elements, Model (4), can be viewed as the compositions of these p autonomous
dynamical systems. An interesting problem is to find a relationship between
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the carrying capacities, globally attracting fixed points, of the FJ and the long-
term dynamics of the p−periodic Leslie model. A cycle for the p−periodic Leslie
model produces cycles in each age class. The values that each age class goes
through are the same but shifted in time. Thus, for each age class the averages
of the age class populations over a cycle are the same.

Definition 4 A k − cycle of Model (4) is attenuant (resonant) when each av-
erage of the age class populations over the k − cycle is less (greater) than the
average of the carrying capacities of the FJ.

This generalizes the Cushing and Henson definitions of attenuant and reso-
nant cycles to include population models with age-structure [8, 24, 27].

4 Carrying Capacity In Constant Environments:

Globally Attracting Fixed Point

The classic Beverton-Holt model without age-structure describes a pioneer pop-
ulation under compensatory dynamics and supports a globally attracting pos-
itive equilibrium (carrying capacity). In this section, we show that the au-
tonomous Leslie model, Model (5), has a globally attracting, positive equilib-
rium population vector (carrying capacity) when the contribution to the next
generation from each fertile age class, fi, is under compensatory dynamics,
and the contribution to the next generation from the oldest age class, fs, is
a pioneer function. This generalizes the results of Kulenovic and Yakubu on
density-dependent Leslie models with 2 age classes [33]. Others have studied
global attractors in higher dimension monotone systems [48, 54, 55].

To prove our results, we need the following monotone systems theorem of
Smith [48] and auxiliary results.

Theorem 5 (Smith [48]) Let T : Rn+ → R
n
+ be C1. In addition, assume

1.DT (x), Jacobian matrix at x, has all positive entries when x has all positive entries.
2.Each of the components of DT (x) is a decreasing function of each component of x.
3.T (0) = 0 and Tn(x)�∞ as n→∞ for every x ∈ Rn+.
4.The spectral radius (modulus of largest eigenvalue) of DT (0) > 1.

Then there exists a unique non-zero fixed point q of T such that for every x 
=
0, Tn(x)→ q as n→∞.

The proof of the following lemma is straightforward and is omitted.

Lemma 6 Let f , h : [0,∞)→ [0,∞).

1. If f and h are compensatory functions, then f + h and f ◦ h are compensatory functions.
2. If f and h are pioneer, then f + h and f ◦ h are pioneer.
3. If f(0) = h(0) = 0, then (f + h)(0) = (f ◦ h)(0) = 0.
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Lemma 7 For each J ∈ {0, 1, ..., p− 1}, let

AJ =




aJ1 aJ2 aJ3 · · · aJs
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0



,

where each aJs > 1. Then the spectral radius of any finite product of the AJ
matrices is larger than 1.

Proof. The determinant of eachAJ is±aJs and is the product of the eigenvalues.
Since aJs > 1, at least one of the eigenvalues of each AJ must have modulus
larger than 1. The determinant of a finite product of the AJ matrices is the
product of the determinants. Thus, any finite product of the AJ matrices has
modulus larger than 1 and hence at least one eigenvalue has modulus larger
than 1. Therefore, the spectral radius of any finite product of the AJ matrices
is larger than 1.

Lemma 8 If the contribution of oldest age class is a pioneer function, then the
spectral radius of the autonomous Leslie model at the origin, DF (0), is larger
than 1.

Proof. The derivative of the autonomous Leslie model at the origin is

DF (0) =




g1(0) g2(0) · · · gs−1(0) gs(0)
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0



.

Use Lemma (7) to establish this result.

Lemma 9 When the contribution of each fertile age class to the next generation
is under compensatory dynamics, then there is no population explosion in the
autonomous Leslie Model (5).

Proof. Recall that for each fertile class lim
xi→∞

fi(xi) exists. Thus, after s gen-

erations, the population of each age class is bounded below by the sum of the
lower bounds on the fi and bounded above by the sum of the upper bounds on
the fi.

Lemma 10 If the greatest common divisor of the set of fertile age classes is 1
and the oldest age class is fertile, then there is a positive integer M such that
for each generation greater than or equal to M each age class is a function of
all the age classes.
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Proof. If j is a fertile age class and the first age class is a function of xi during
the Lth generation (FL1 ), then it is also a function of xi during the (L+ j)

th

generation (FL+j1 ). So for every generation Q larger than L, the first age class
is a function of xi when Qmod j = Lmod j. Suppose the fertile age classes are
{j1, j2, ..., jr}. Then, the first age class of the generation obtained by adding any
positive integer combination of the j′is to L is also a function of xi.

Since this set of positive integers has 1 as their greatest common divisor,
there exist integers {a1, a2, ..., ar} such that

∑r
i=1 aiji = 1. Let {ai1 , ai2 , ..., ain} ⊂

{a1, a2, ..., ar} be the set of negative a
′

is.The first age class of the (L−
∑n
k=1 aikjik)

th

generation is also a function of xi. Since −
∑n
k=1 aikjik +

∑r
i=1 aiji is a positive

integer combination of the j′is, the first age class of the (L−
∑n
k=1 aikjik +

∑r
i=1 aiji)

th

generation is also a function of xi. In fact, it is also true for all generations of the
form L+N1 (−

∑n
k=1 aikjik +

∑r
i=1 aiji) +N2 (−

∑n
k=1 aikjik) , where N1 and

N2 are nonnegative integers. Note thatN1 (−
∑n
k=1 aikjik +

∑r
i=1 aiji)mod (−

∑n
k=1 aikjik) =

N1mod(−
∑n
k=1 aikjik) . Every integer larger than (−

∑n
k=1 aikjik)

2
can be

can be written as A (−
∑n
k=1 aikjik) + B, where A ≥ (−

∑n
k=1 aikjik) and

0 ≤ B < (−
∑n
k=1 aikjik) . Therefore, every integer larger than (−

∑n
k=1 aikjik)

2

can be can be written as N1 (−
∑n
k=1 aikjik +

∑r
i=1 aiji)+N2 (−

∑n
k=1 aikjik),

where N1 = B and N2 = A − B > 0. Thus, the first age class is a func-

tion of xi during every generation larger than L + (−
∑n
k=1 aikjik)

2
. As time

goes by the younger age class populations are shifted to the older age classes.
Thus, all age classes are functions of xi during every generation larger than

L+ (−
∑n
k=1 aikjik)

2
+ s. Since the oldest age class is fertile, the first age class

is a function of each xi at least once in the first s generations. Hence, all age
classes are functions of all xi during every generation larger than or equal to

M = 2s+ (−
∑n
k=1 aikjik)

2
.

Lemma 11 If the greatest common divisor of the set of fertile age classes is 1,
the oldest age class is fertile, and the contribution to the next generation from
each fertile age class, fi, is under compensatory dynamics, then there is a posi-
tive integer M such that when m ≥ M, DFm(x) has all positive entries, when
x has all positive entries. Furthermore, each component of DFm(x) decreases
with each xi.

Proof. Let M = 2s + (−
∑n
k=1 aikjik)

2
be the number found in Lemma (10).

When m ≥ M each component of Fm(x) is a function of each xi. The com-
ponents consist of finite sums of fi acting on finite sums of fj acting on finite
sums of fk · · ·. The partial derivative of each component with respect to each xi
consists of a finite sum of products of the f ′j . Since each f

′

j(z) > 0 and fj(z) ≥ 0
when z ≥ 0, the finite sum is positive when each component of x is nonnegative.

The second partial derivative of each component of Fm(x) with respect to
each xi consists of a finite sum of products of the f ′j and one f ′′k . Since each
f ′j(z) > 0, f ′′k (z) < 0 and fj(z) ≥ 0 when z ≥ 0, the finite sum is negative
when each component of x is nonnegative. Thus, each component of DFm(x)
decreases with each xi.
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Theorem 12 If the greatest common divisor of the set of fertile age classes is
1, the contribution to the next generation from each fertile age class, fi, is under
compensatory dynamics, and the contribution to the next generation from the
oldest age class, fs, is also a pioneer function, then F has a unique non-zero
fixed point, x∞, and for every x 
= 0, Fn(x)→ x∞ as n→∞.

Proof. To prove this result, we start by showing that there is a positive integer
M such that for each m ≥ M,Fm satisfies all the hypotheses of Theorem (5).

ChooseM = 2s+(−
∑n
k=1 aikjik)

2
, as developed in Lemma (10). Since F is C1

and F (0) = 0, Fm is C1 and Fm(0) = 0 for all m. By Lemma (7), DF (0) has
spectral radius larger than 1. Thus, DFm(0) has spectral radius larger than
1 for all m. Lemma (11) shows that if m ≥ M , then conditions 1 and 2 of
Theorem (5) are satisfied using Fm. Lemma (9) gives boundedness of orbits
(condition 3). Hence, all of the hypotheses of Theorem (5) are satisfied for Fm,
whenever m ≥M. Therefore, there exists a unique non-zero fixed point xm

∞
for

each Fm such that for every x 
= 0, Fnm(x) → xm
∞

as n → ∞. In particular,
Fnm(xm+1

∞
) → xm

∞
as n → ∞. But Fn(m+1)m(xm+1

∞
) = xm+1

∞
for all n. This

implies that xm
∞
= xm+1

∞
. So each Fm has the same unique non-zero fixed

point, x∞. Which implies that F (x∞) = x∞ and for every x 
= 0, Fn(x)→ x∞
as n→∞.

When the greatest common divisor of the fertile age classes, Q, is larger
than 1, the Leslie model also has a globally attracting fixed point, whenever
the contribution to the next generation from each fertile age class, fi, is under
compensatory dynamics and the contribution to the next generation from the
oldest age class, fs, is also a pioneer function. The proof of this result uses
Theorem (5) on a subspace of dimension s/Q.

Lemma 13 Let Q be the greatest common divisor of the fertile age classes and
the oldest age class be fertile. Then the Qth power of the Leslie model (5)
decouples into Q identical subsystems of dimension s/Q which are Leslie models
with greatest common divisor of the fertile age classes equal to 1.

Proof. Let Q be the greatest common divisor of the fertile age classes. Then Q
is less than or equal to the youngest fertile age class. The ith component of F is
a function of a subset of {xj |jmodQ = (i−1)modQ}. The ith component of F 2

is a function of a subset of {xj |jmodQ = (i−2)modQ}, and the ith component
of FQ is a function of a subset of {xj |jmodQ = (i − Q)modQ = imodQ}.
Thus, after Q generations the Leslie model has decoupled into Q subsystems of
dimension s/Q via the equivalence classes modQ. Notice that these subsystems
are Leslie models with greatest common divisor of the fertile age classes equal
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to 1. The function FQ is given by the following set of equations





x1(t+ 1) =
∑s/Q
i=1 fiQ(x(i−1)Q+1(t))

x2(t+ 1) =
∑s/Q
i=1 fiQ(x(i−1)Q+2(t))

...
...

...

xQ(t+ 1) =
∑s/Q
i=1 fiQ(x(i−1)Q+Q(t))

xQ+1(t+ 1) = x1(t)
xQ+2(t+ 1) = x2(t)
...

...
...

xs(t+ 1) = xs−Q(t)

From this we see that the Q subsystems are identical.

Theorem 14 If the contribution to the next generation from each fertile age
class, fi, is under compensatory dynamics, and the contribution to the next
generation from the oldest age class, fs, is also a pioneer function, then F has a
unique non-zero fixed point, x∞, and for every x 
= 0, Fn(x)→ x∞ as n→∞.

Proof. Theorem (12) establishes this result when the greatest common divisor
of the fertile age classes is 1. When the greatest common divisor of the fertile
age classes is Q 
= 1, FQ decouples into Q subsystems which are Leslie models
with greatest common divisor of the fertile age classes equal to 1, (Lemma (13)).
Applying Theorem (12) to each of the Q subsystems of FQ, we obtain that each
subsystem has a unique non-zero fixed point that attracts all non-zero points in
the subspace. Since the subsystems are identical, the fixed points are identical.
Recall that a fixed point of a Leslie model has all components equal. Thus,
the point with this common value for each of its s components is a fixed point
for FQ. Since the system decouples and each of the fixed points are globally
attracting, the s−dimensional fixed point for FQ is also globally attracting. To
see that F1 of the s−dimensional fixed point is the common coordinate value
of the fixed point, note that in (Q − 1) more iterations this value will be the
Qth coordinate where it must be the common coordinate value. Thus, the
s−dimensional fixed point for FQ is also a fixed point of F. By continuity, for
every x 
= 0, Fn(x)→ x∞ as n→∞.

Leslie models with density-dependent non-periodic fecundity functions have
a globally attracting fixed point with all coordinates equal (Theorem (14), when-
ever the contribution to the next generation from each fertile age class, fi, is
under compensatory dynamics, and the contribution to the next generation from
the oldest age class, fs, is also a pioneer function. This common coordinate is
the carrying capacity of each age class.

Population models without age-structure have the same long-term dynam-
ics as those with age-structure when the governing dynamics is compensatory.
That is, in constant environments, adding age structure preserves compensatory
dynamics.

11



5 Globally Attracting Cycles In Periodic Envi-

ronments

Nonoscillatory dynamics are rare in fluctuating environments [18-20]. In this
section, we show that in periodically varying environments, the compensatory
Leslie model has a globally attracting periodic orbit. To prove this result, we
use Theorem (5) of Smith and proceed as in the proof of Theorem (14). We will
use the following auxiliary results to outline the proof.

Lemma 15 If for each t the contribution to the (t+ 1) generation from the
oldest age class, fs(t, ·), is a pioneer function, then the spectral radius of

D(F (p− 1)(F (p− 2)(· · ·(F1(F0(x))) · ··)))

at x = 0 is larger than 1.

Proof. Since FJ(0) = 0 for all J,

D(F (p− 1)(F (p− 2)(· · ·(F1(F0(x))) · ··))) at 0 is Πp−1J=0D(FJ)(0),

where each D(FJ)(0) is a Leslie matrix with determinant gs(J, 0) > 1. The
result follows immediately by Lemma (7).

Lemma 16 When the contribution of each fertile age class to the next genera-
tion is under compensatory dynamics, then there is no population explosion in
the p-periodic Leslie Model (4).

The proof is similar to the proof of Lemma (9) and is omitted.
In our p−periodic Leslie model, the set of fertile age classes is the same from

generation to generation. Thus, the greatest common divisor of the set of fertile
age classes is well defined.

Lemma 17 In the p-periodic Leslie Model (4), if the greatest common divisor
of the set of fertile age classes is 1, then there is a positive integer M such that
for each generation greater than or equal to M each age class is a function of
all the age classes.

Proof. Proceed exactly as in the proof of Lemma (10) while replacing FL1 with
F ((L− 1)mod p)1 ◦ F ((L− 2)mod p)1 ◦ · · · ◦ F11 ◦ F01.

Lemma 18 In the p-periodic Leslie Model (4), if the greatest common divisor
of the set of fertile age classes is 1, and for each t the contribution to the (t+ 1)
generation from each fertile age class, fi(t, ·), is under compensatory dynamics,
then there is a positive integer M such that when m ≥M,

D(F ((m− 1)mod p)(F ((m− 2)mod p)(· · ·(F1(F0(x))) · ··)))

has all positive entries, when x has all positive entries. Furthermore, each
component of

D(F ((m− 1)mod p)(F ((m− 2)mod p)(· · ·(F1(F0(x))) · ··)))

decreases with each xi.

12



Proof. Let M = 2s + (−
∑n
k=1 aikjik)

2
be the number found in Lemma (17).

When m ≥ M, each component of F ((m − 1)mod p)(F ((m − 2)mod p)(· ·
·(F1(F0(x))) · ··)) is a function of each xi. The components consist of finite sums
of fi(t, ·) acting on finite sums of fj(t− 1, ·) acting on finite sums of fk(t− 2, ·)
· · ·. The partial derivative of each component with respect to each xi consists
of a finite sum of products of the

∂fj
∂xi
. Since each

∂fj
∂xi

> 0 and fj(t, z) ≥ 0 when
z ≥ 0, the finite sum is positive when each component of x is nonnegative.

The second partial derivative of each component of F ((m−1)mod p)(F ((m−
2)mod p)(· · ·(F1(F0(x))) · ··)) with respect to each xi consists of a finite sum of

products of the ∂fj
∂xi

and one ∂2fk
∂x2i

. Since each ∂fj
∂xi

> 0, ∂
2fk
∂x2i

< 0 and fj(t, z) ≥ 0

when z ≥ 0, the finite sum is negative when each component of x is nonnegative.
Thus, each component of D(F ((m−1)mod p)(F ((m−2)mod p)(···(F1(F0(x)))·
··))) decreases with each xi.

Theorem 19 Let the greatest common divisor of the set of fertile age classes be
1. If for each t, the contribution to the (t+ 1) generation from each fertile age
class, fi(t, ·), is under compensatory dynamics, and for each t the contribution
to the (t+ 1) generation from the oldest age class, fs(t, ·), is also a pioneer
function, then the p− periodic Leslie Model (4) has a unique non-zero periodic
cycle which attracts all non-zero initial population sizes.

Proof. Let F̃m(x) = F ((m− 1)mod p)(F ((m− 2)mod p)(· · ·(F1(F0(x))) · ··)).
To prove this result, we start by showing that there is a positive integer M
such that for each m ≥ M, F̃m(x) satisfies all the hypotheses of Theorem (5).

Choose M = 2s + (−
∑n
k=1 aikjik)

2
, as developed in Lemma (17). Since each

FJ is C1 and FJ(0) = 0, F̃m(x) is C1 and F̃m(0) = 0 for all m. By Lemma

(15), D(F̃m(x)) has spectral radius larger than 1 for all m. Lemma (18) shows
that if m ≥ M , then conditions 1 and 2 of Theorem (5) are satisfied using

F̃m(x). Lemma (16) gives boundedness of orbits (condition 3). Hence, all

of the hypotheses of Theorem (5) are satisfied for F̃m(x) whenever m ≥ M.

Therefore, if m ≥ M there exists a unique non-zero fixed point xm
∞

for F̃m(x)

such that for every x 
= 0,
(
F̃m

)n
(x)→ xm

∞
as n→∞.

For the remainder of the proof assume m = kp, where k is a positive integer.

Our system is p-periodic, thus
(
F̃m

)n
(x) =

(
F̃ kp

)n
(x) =

(
F̃ p
)kn

(x). In

particular,
(
F̃ p
)kn

(xm+p
∞

) → xm
∞

as n → ∞. Now,
(
F̃ p
)(k+1)kn

(xm+p
∞

) =
(
F̃ p(k+1)

)kn
(xm+p
∞

) =
(
F̃m+p

)kn
(xm+p
∞

) = xm+p
∞

for all n. This implies that

xm
∞
= xm+p

∞
. So each F̃ kp has the same unique non-zero fixed point, x∞,

which implies that F̃ p(x∞) = x∞ and for every x 
= 0,
(
F̃ p
)n
(x) → x∞ as

n → ∞. Thus, the periodic cycle {x∞, F0(x∞), F1(F0(x∞)), ..., F (p − 2)(· ·

·(F1(F0(x∞)))), F̃ p(x∞) = x∞} is a globally attracting cycle.
When the greatest common divisor of the fertile age classes, Q, is larger than

1, the p-periodic Leslie model has a globally attracting cycle, whenever for each
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t the contribution to the (t+ 1) generation from each fertile age class, fi(t, ·),
is under compensatory dynamics, and for each t the contribution to the (t+ 1)
generation from the oldest age class, fs(t, ·), is also a pioneer function. The
proof of this result uses Theorem (5) on a subspace of dimension s/Q.

Lemma 20 Let Q be the greatest common divisor of the fertile age classes,
then the p-periodic Leslie model (4) decouples into Q p-periodic subsystems of
dimension s/Q with the same fertile age classes. The subsystems are p-periodic
Leslie models with greatest common divisor of the fertile age classes equal to 1.

Proof. Let Q be the greatest common divisor of the fertile age classes. Then Q
is less than or equal to the youngest fertile age class. The ith component of F0
is a function of a subset of {xj |jmodQ = (i− 1)modQ}. The ith component of
F1 ◦ F0 is a function of a subset of {xj |jmodQ = (i− 2)modQ}, and the ith

component of F (Q−1)◦ · · · ◦F1◦F0 is a function of a subset of {xj |jmodQ =
(i−Q)modQ = imodQ}. Thus, after Q generations the system has decoupled.
Since the system is p-periodic, it returns to the same decoupled systems after
every pQ generations. Thus, the p−periodic Leslie Model (4) has decoupled into
Q p−periodic subsystems of dimension s/Q via the equivalence classes modQ.
Notice that these subsystems are p-periodic Leslie models with greatest common
divisor of the fertile age classes equal to 1. The function F ((t+Q− 2)mod p)◦
· · · ◦ F ((t)mod p) ◦ F ((t− 1)mod p) is given by the following set of equations

x1(t+Q) =
∑s/Q
i=1 fiQ(t+Q− 1, x((i−1)Q+1)(t))

x2(t+Q) =
∑s/Q
i=1 fiQ(t+Q− 2, x((i−1)Q+2)(t))

...
...

...

xQ(t+Q) =
∑s/Q
i=1 fiQ(t, x((i−1)Q+Q)(t))

xQ+1(t+Q) = x1(t)
xQ+2(t+Q) = x2(t)
...

...
...

xs(t+Q) = xs−Q(t)





. (6)

From this, we see that the Q subsystems have the same fertile age classes.

Theorem 21 If for each t the contribution to the (t+ 1) generation from each
fertile age class, fi(t, ·), is under compensatory dynamics, and for each t the
contribution to the (t+ 1) generation from the oldest age class, fs(t, ·), is also a
pioneer function, then the p− periodic Leslie Model (4) has a unique non-zero
periodic cycle which attracts all non-zero initial population sizes.

Proof. Theorem (19) establishes this result when the greatest common divisor
of the fertile age classes is 1. When the greatest common divisor of the fertile
age classes is Q 
= 1, the p-periodic Leslie Model (4) decouples into Q p-periodic
subsystems of dimension s/Q with the same fertile age classes, (Lemma (20)).
The subsystems can be viewed as p-periodic Leslie models with greatest common
divisor of the fertile age classes equal to 1, where the generational gap (step size)
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is Q. Applying Theorem (19) to each of the Q p−periodic subsystems, we obtain
that each subsystem has a unique non-zero cycle, with period a divisor of p, that
attracts all non-zero points in the subspace. Let (yK

∞,1, y
K
∞,2, ..., y

K
∞,s/Q) be the

initial point on the cycle for the Kth subsystem (K ∈ {1, 2, ..., Q}). Then,

y∞ =
(
y0
∞,1, y

1
∞,1, ..., y

Q−1
∞,1 , y

0
∞,2, y

1
∞,2, ..., y

Q−1
∞,2 , ...y

0
∞,s/Q, y

1
∞,s/Q, ..., y

Q−1
∞,s/Q

)

(7)

is the initial point for a cycle for the p-periodic Leslie Model (4). Note that, the
period of the cycle that starts at y∞ is a divisor of pQ. Since each of the non-
zero cycles attract all non-zero points under iterations of the subsystems, which
corresponds to Q iteration of the full model, all non-zero points are attracted to
the cycle that starts at y∞ under Q iterations. By continuity of our p−periodic
system, all orbits must limit on the cycle that starts at y∞. A theorem of Elaydi
and Sacker [11-14] establishes that the period of the cycle starting at y∞ must
divide p.

6 Nonattenuant and Nonresonant Cycles In Pe-

riodic Leslie Models

The Beverton-Holt model, the logistic differential equation and the logistic dif-
ference equation (without age-structure) have been used to show that periodic
environment is always deleterious. That is, the average of the population os-
cillations in the periodic environment is less than the average of the carrying
capacity in the corresponding constant environments (attenuance) [8, 31, 32,
30, 11-14]. In this section, we show that many periodically forced compensatory
Leslie models have cycles which are neither attenuant nor resonant.

Theorem 22 If for each t the contribution to the (t+ 1) generation from each
fertile age class, fi(t, ·), is under compensatory dynamics, and for each t the
contribution to the (t+ 1) generation from the oldest age class, fs(t, ·), is also
a pioneer function of the p− periodic Model (4) and the least common multiple
of the fertile age classes, Q, is a multiple of p, then the global attracting cycle
of Model (4) is neither attenuant nor resonant.

Proof. From Theorem (14), each FJ has a globally attracting positive fixed
point and all the components of the fixed point are the same. Let yJ

∞
be this

common value. We will show that y = (yp−1
∞

, yp−2
∞

, ..., y0
∞
, yp−1
∞

, yp−2
∞

, ..., y0
∞
) ∈

R
s
+ is the initial point on the unique positive periodic cycle given by The-

orem (21). Since s is a multiple of Q and Q is a multiple of p, each yJ
∞

is repeated s/p times in y and each of the fertile age classes have popula-
tion y0

∞
at the point y. Thus, F0(y) = (y0

∞
, yp−1
∞

, ..., y1
∞
, y0
∞
, yp−1
∞

, ..., y1
∞
).

Each of the fertile age classes have population y1
∞

at the point F0(y). Hence,
(F1◦F0)(y) = (y1

∞
, y0
∞
, yp−1
∞

, ..., y2
∞
, y1
∞
, y0
∞
, yp−1
∞

, ..., y2
∞
). Repeating this com-

position argument gives (F (p − 1) ◦ F (p − 2) ◦ · · · ◦ F0)(y) = y, so y is the
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initial point of the unique periodic cycle. Thus, the total population remains
constant over the unique periodic cycle and the average age class population is
1
p

∑p−1
J=0 y

J
∞
, which is also the average of the carrying capacities. Hence, this

globally attracting cycle fails to be either attenuant or resonant.
When Q = s, the oldest age class is the only fertile class. Such reduced

Leslie models are also known to support nonattenuant and nonresonant cycles
when the environment is not constant [20].

7 Attenuant Cycles In Periodic Leslie Models

In periodic environments, age-structured population models are capable of sup-
porting globally attracting attenuant cycles. To illustrate this diminishing effect
on population sizes, we consider the p-periodic Leslie Model (4), where the con-
tribution of each ith age class to the next generation is the periodic Beverton-
Holt model. Since the classical Beverton-Holt model is a pioneer map under
compensatory dynamics, Theorem (21) provides a globally attracting cycle for
the following Beverton-Holt age-structured model with periodic environmental
carrying capacity:

x1(t+ 1) =
∑s
i=1

µK(t)xi(t)
K(t)+(µ−1)xi(t)

x2(t+ 1) = x1(t)
... =

...
xs(t+ 1) = xs−1(t)




. (8)

In contrast to Theorem (22), we show that the globally attracting cycle of Model
(8) is attenuant. That is, in Model (8), fluctuating environments are deleterious
to the species. We summarize this in the following result.

Theorem 23 The globally attracting cycle in Model (8) is attenuant.

Proof. From Theorem (14), each FJ has a globally attracting positive fixed
point and all the components of the fixed point are the same. Let yJ

∞
be

this common value, carrying capacity. Now since yJ
∞

is the first component

of this positive fixed point, yJ
∞
=
∑s
i=1

µK(J)yJ
∞

K(J)+(µ−1)yJ
∞

= sµK(J)yJ
∞

K(J)+(µ−1)yJ
∞

and

1 = sµK(J)
K(J)+(µ−1)yJ

∞

. Hence, yJ
∞
= (sµ−1)K(J)

µ−1 and the total population, syJ
∞
,

equals s(sµ−1)K(J)
µ−1 . The average of the total populations satisfies the equations

1

p

p−1∑

J=0

syJ
∞
=
1

p

p−1∑

J=0

s(sµ− 1)K(J)

µ− 1
=
s(sµ− 1)

p(µ− 1)

p−1∑

J=0

K(J)

and the average of the carrying capacities is

1

p

p−1∑

J=0

yJ
∞
=
(sµ− 1)

p(µ− 1)

p−1∑

J=0

K(J).
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Denote the initial point of the globally attracting p−cycle by z = (z1, z2, ..., zs).

Therefore, F0(z) = (zp, z1, ..., zs−1), where zp =
∑s
i=1

µK(0)zi
K(0)+(µ−1)zi

; (F1 ◦ F0) (z) =

(zp−1, zp, ..., zs−2), where zp−1 =
∑s
i=1

µK(1)zi−1
K(1)+(µ−1)zi−1

and z0 ≡ zp. After p it-

erations, we have zi = zp+i for i ∈ {−p+ 1,−p+ 2, ..., 0} and

zp−J =
s∑

i=1

µK(J)zi−J
K(J) + (µ− 1)zi−J

for J ∈ {0, 1, 2, ..., p − 1}. During the cycle each age class takes on the same
values, but with a shift in time. Defining zi = zimod p for all integers i is
consistent with the z′s already defined. Hence, the average of the age class
population is 1

p

∑p
j=1 zj .

We will show that
∑p
j=1 zj <

(sµ−1)
(µ−1)

∑p−1
J=0K(J), which implies attenuance.

Now
∑p
j=1 zj =

∑p−1
j=0 zp−J =

∑p−1
J=0

∑s
i=1

µK(J)zi−J
K(J)+(µ−1)zi−J

=
∑p−1
J=0

∑s
i=1

µK(J)
(µ−1)

(µ−1)zi−J
K(J)

1+
(µ−1)zi−J

K(J)

.

Clearly h(x) = x
1+x is concave down and thus satisfies Jensen’s inequality

h

(∑p−1
J=0

∑s
i=1wiJuiJ∑p−1

J=0

∑s
i=1wiJ

)
>

∑p−1
J=0

∑s
i=1wiJh(uiJ)∑p−1

J=0

∑s
i=1wiJ

.

Letting wiJ =
µK(J)
(µ−1) , uiJ =

(µ−1)zi−J
K(J) and applying Jensen’s inequality yields

p∑

j=1

zj <

(
p−1∑

J=0

s∑

i=1

µK(J)

(µ− 1)

)
· h



∑p−1
J=0

∑s
i=1

µK(J)
(µ−1)

(µ−1)zi−J
K(J)∑p−1

J=0

∑s
i=1

µK(J)
(µ−1)




=

(
sµ

µ− 1

p−1∑

J=0

K(J)

)
· h

(
sµ
∑p−1
J=0 zJ

sµ
µ−1

∑p−1
J=0K(J)

)

=

(
sµ

µ− 1

p−1∑

J=0

K(J)

)
·

sµ
∑p−1

J=0 zJ
sµ
µ−1

∑p−1
J=0K(J)

1 +
sµ
∑p−1

J=0 zJ
sµ
µ−1

∑p−1
J=0K(J)

=

(
sµ

µ− 1

p−1∑

J=0

K(J)

)
sµ
∑p−1
J=0 zJ

sµ
µ−1

∑p−1
J=0K(J) + sµ

∑p−1
J=0 zJ

.

Therefore, since all K(J), zJ and µ− 1 are positive,
(

sµ

µ− 1

p−1∑

J=0

K(J) + sµ

p−1∑

J=0

zJ

)
p∑

j=1

zj <

(
sµ

µ− 1

p−1∑

J=0

K(J)

)
sµ

p−1∑

J=0

zJ .

That is,
(

1

µ− 1

p−1∑

J=0

K(J) +

p−1∑

J=0

zJ

)
<

sµ

µ− 1

p−1∑

J=0

K(J).
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Hence,

p−1∑

J=0

zJ <
sµ− 1

µ− 1

p−1∑

J=0

K(J)

and the globally attracting periodic cycle is attenuant.

8 Resonant Cycles In Periodic Leslie Models

There is theoretical and experimental evidence of negative and positive impact
on populations by fluctuating environments [5, 26, 27, 29]. In the previous
section, we discussed the diminishing effects of periodic environments in com-
pensatory Leslie models. In this section, we use a specific example to illustrate
enhancing effects of periodic environments in compensatory Leslie models. To
show this, we consider a 2-age class Beverton-Holt Leslie model with 2-periodic
carrying capacity and 2-periodic demographic characteristic of the species. The
model is of the form

x1(t+ 1) =
∑2
i=1

µ(t)K(t)xi(t)
K(t)+(µ(t)−1)xi(t)

x2(t+ 1) = x1(t)

}
, (9)

where K(t+ 2) = K(t) and µ(t+ 2) = µ(t).

Example 24 In Model (9), set the following values:

K(0) = 2.2
K(1) = 1.8
µ(0) = 5.5
µ(1) = 4.5




.

As predicted by Theorem (19), Example (24) has a globally attracting 2 -
cycle that oscillates between

(14.756, 15.473) and (15.473, 14.756).

The average value of this period 2 orbit is 15.1145.
For each J ∈ {0, 1}, define FJ : R2+ → R

2
+ by

FJ(x1, x2) =

(
2∑

i=1

xigi(J, xi), x1

)
,

where

g1(J, x1) = µ(J)K(J)
K(J)+(µ(J)−1)x1(t)

g2(J, x2) = µ(J)K(J)
K(J)+(µ(J)−1)x2(t)

}
.
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The positive fixed points of F0 and F1 are (15.583, 15.583) and (14.625, 14.625),
respectively. The average of the carrying capacities is 15.104 which is less than
15.1145. That is, Example (24) has a resonant 2 - cycle.

Unlike Model (8), in Example (24), both the carrying capacity and the de-
mographic characteristic of the species are periodically forced. The 2-parameter
periodic forcing generates resonant cycles in Example (24).

9 Conclusion

We use the monotone systems theory of Smith [48] to derive conditions un-
der which a nonlinear, density-dependent, p−periodically forced compensatory
Leslie model has a globally attracting cycle. The average of the resulting pe-
riodic attractor may be smaller (attenuance) or larger (resonance) than the
average of the carrying capacities of the associated autonomous model. When
the least common multiple of the fertile age classes is a multiple of p and the
oldest age class is pioneer, we use precise mathematical definitions of pioneer
species and compensatory dynamics to show that the average of the periodic at-
tractor is equal to the average of the carrying capacities. That is, environmental
fluctuations do not always always enhance or diminish populations.

In a recent paper, Cushing showed that a periodic environment is always
deleterious for populations modeled by a class of monotone difference equations
without age-structure [8]. We use a 2-parameter Leslie model to illustrate the
occurrence of resonance cycles in age class models under compensatory dynam-
ics.

Our results support the Tribolium experimental evidence of Jillson and Con-
stantino et al. on the diminishing and enhancing effects of periodic environ-
ments. Furthermore, our results generalize the theoretical results of Cushing
and Henson, Elaydi and Sacker, Franke and Yakubu, Kocic and Kon to include
compensatory Leslie models.

In both constant and periodic environments, age-structure has no impact
on the ultimate outcomes of population models under compensatory dynam-
ics. That is, the long-term attractors in constant and periodic environments
are fixed points and periodic orbits (non-chaotic), respectively. However, peri-
odically forced population models with or without age-structure are capable of
generating chaotic attractors with complicated structures when the governing
dynamics are overcompensatory. Response of age-structured populations to pe-
riodic environments is a complex function of the period of the environments, the
type and nature of the fluctuations, and the underlying compensatory mecha-
nisms. Our analysis have highlighted some of these relationships in compen-
satory Leslie models. Studies on the combined effects of periodic forcing and
age-structure on overcompensatory Leslie models would be welcome [33, 53].
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