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DISCRETE-TIME SIS EPIDEMIC MODEL IN A SEASONAL
ENVIRONMENT∗

JOHN E. FRANKE† AND ABDUL-AZIZ YAKUBU‡

Abstract. We study the combined effects of seasonal trends and diseases on the extinction and
persistence of discretely reproducing populations. We introduce the epidemic threshold parameter,
R0, for predicting disease dynamics in periodic environments. Typically, in periodic environments,
R0 > 1 implies disease persistence on a cyclic attractor, while R0 < 1 implies disease extinction.
We also explore the relationship between the demographic equation and the epidemic process. In
particular, we show that in periodic environments, it is possible for the infective population to be on
a chaotic attractor while the demographic dynamics is nonchaotic.

Key words. epidemics, infectives, periodic environments, susceptibles

AMS subject classifications. 37G15, 37G35, 39A11, 92B05

DOI. 10.1137/050638345

1. Introduction. The complexities of a periodic environment can significantly
affect the regulation of species [26]. In periodic environments, population sizes are
often either enhanced via resonance or diminished via attenuance [5, 10, 11, 13, 14, 15,
16, 17, 18, 19, 20, 23, 24, 25, 30, 31, 32, 33, 34, 35, 37, 38, 45, 48, 50]. However, most
epidemic models in the literature (with a few exceptions) neglect seasonal factors
[3, 4, 12]. For example, Allen and Burgin [1], Allen [2], and Castillo-Chavez and
Yakubu [7, 8, 9] studied disease invasions in discretely reproducing populations that
live on attractors in constant (nonperiodic) environments. Cushing and Henson [14],
Elaydi and Sacker [17, 18, 19, 20], Franke and Yakubu [23, 24], Kocic [35], Kocic and
Ladas [36], Kon [37, 38], and others have studied the effects of periodic environments
on ecological models without explicit disease dynamics [46].

In this paper, we focus on the impact of seasonal factors on a discrete-time SIS
(susceptible-infected-susceptible) epidemic model. The model reduces to the SIS epi-
demic model of Castillo-Chavez and Yakubu when the environment is constant (non-
periodic) [7, 8, 9]. To understand the impact of seasonality and disease on life-history
outcomes, we study the long-term dynamics of our model under specific functional
forms for the periodic recruitment function. The periodic Beverton–Holt [6], the pe-
riodic constant, and the periodic Malthus (geometric growth) models are the periodic
recruitment functions for this study [7, 8, 9].

We assume that a disease invades and subdivides the target population into two
classes: susceptibles (noninfectives) and infectives. Prior to the time of disease inva-
sion, the population is assumed to be governed by a periodically forced demographic
equation with a periodic recruitment function. Hence, the population is assumed to be
either at a demographic “steady state” (an attracting cycle) or growing at a periodic
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geometric rate. The transition from susceptible to infective is a function of the con-
tact rate α (between individuals) and the proportion of infectives (prevalence) in the
population. We derive the epidemic threshold parameter, R0, for predicting disease
persistence or extinction in periodic environments. We also explore the relationship
between the demographic equation and the epidemic process. Castillo-Chavez and
Yakubu, in [7, 8, 9], show that in constant environments the demographic equation
drives the disease dynamics. In stark contrast, we use numerical simulations to show
that in periodic environments the demographic equation does not always drive the
disease dynamics. We show that, in periodic environments, it is possible for the in-
fective population to be on a chaotic attractor while the demographic dynamics is
nonchaotic.

The paper is organized as follows. In section 2, we introduce the periodically
forced demographic equation for the study. The equation, a nonautonomous nonlin-
ear difference equation with periodic recruitment function, describes the dynamics of
the (total) population before disease invasion. We review, in section 2, the results of
Franke and Yakubu on periodically forced recruitment functions. The main model,
a periodically forced discrete-time SIS epidemic model, is constructed in section 3.
When the recruitment function is either a periodic constant or the periodic Beverton–
Holt model, then the total population is persistent and lives on a globally attracting
cycle. Autonomous discrete-time models do not support (nontrivial) globally stable
cycles [21]. In section 4, the basic reproductive number R0 is introduced and used
to predict the (uniform) persistence or extinction of the infective population, where
the recruitment function is either a periodic constant or the periodic Beverton–Holt
model. Section 5 covers the SIS epidemic model under asymptotically cyclic demo-
graphic dynamics, while sections 6 and 7 describe the epidemic model under geometric
demographic dynamics. As in section 4, in section 6, R0 is used to predict the (uni-
form) persistence or extinction of the proportion of infectives in the total population.
Conditions for disease persistence on cyclic attractors are introduced in section 7.

Periodically forced population models support multiple attractors, and we use
numerical simulations to show, in section 8, that our periodic epidemic model supports
multiple attractors. Section 9 is on period-doubling bifurcations in the epidemic model
where the demographic dynamics is simple and nonchaotic. The implications of our
results are discussed in section 10.

2. Demographic equations with seasonality. In constant environments, the-
oretical discrete-time epidemic models are usually formulated under the assumption
that the dynamics of the total population size in generation t, denoted by N(t), is
governed by equations of the form

N(t + 1) = f(N(t)) + γN(t),(1)

where γ ∈ (0, 1) is the constant “probability” of surviving per generation and f :
R+ → R+ models the birth or recruitment process [7, 9].

Seasonality can be introduced into (1) by writing the recruitment function as
a p-periodically forced function. This is modeled with the p-periodic demographic
equation

N(t + 1) = f(t,N(t)) + γN(t),(2)

where ∃ p ∈ N such that

f(t,N(t)) = f(t + p,N(t)) ∀t ∈ Z+.
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We assume throughout that f(t,N) ∈ C2(Z+ × R+,R+) and γ ∈ (0, 1) [25].
Franke and Yakubu, in [25], studied model (2) with the periodic constant recruit-

ment function

f(t,N(t)) = kt(1 − γ)

and with the periodic Beverton–Holt recruitment function

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)
,

where the carrying capacity kt is p-periodic, kt+p = kt for all t ∈ Z+ [14, 25]. Franke
and Yakubu proved that the periodically forced recruitment functions generate glob-
ally attracting cycles in model (2) [25]. We summarize their results in the following
two theorems.

Theorem 1. Model (2) with f(t,N(t)) = kt(1 − γ) has a globally attracting
positive s-periodic cycle that starts at

x0 =
(1 − γ)

(
kp−1 + kp−2γ + · · · + k0γ

p−1
)

1 − γp
,

where s divides p.

Theorem 2. Model (2) with f(t,N(t)) = (1−γ)μktN(t)
(1−γ)kt+(μ−1+γ)N(t) and μ > 1 has a

globally attracting positive s-cycle, where s divides p.
Theorems 1 and 2 imply that the total population is asymptotically periodic

(bounded) and lives on a cyclic attractor when the recruitment function is either a
periodic constant or the Beverton–Holt model. Denote this cycle by {N0, N1, . . . ,
Ns−1}. When new recruits arrive at the periodic positive per-capita growth rate λt,
then

f(t,N(t)) = λtN(t),

where λt+p = λt for all t ∈ Z+. The solution to the demographic equation is

N(t) =

(
t−1∏
J=0

(λJ + γ)

)
N(0),

and the demographic basic reproductive number is

Rd =

∏p−1
J=0 (λJ + γ) − γp

1 − γp
.(3)

Rd gives the average number of descendants produced by a typically small initial
population over a p-cycle. If Rd < 1, the total population goes extinct at a geometric
rate, and if Rd > 1, the total population explodes at a geometric rate. In constant
environments, p = 1, λJ = λ, and Rd reduces to

Rd =
λ

1 − γ
.

In [7, 8, 9], Castillo-Chavez and Yakubu used Rd = λ
1−γ to study the long-term

behavior of geometrically growing populations in constant environments.
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3. SIS epidemic model in periodic environments. In this section, we in-
troduce the main model, an SIS epidemic model with periodic forcing. To do this,
we assume that a nonfatal infectious disease has invaded a population living in a
seasonal environment. The population is governed by (2). To model the disease, we
build a simple SIS epidemic process on “top” of the periodic demographic equation.
We let S(t) denote the population of susceptibles; I(t) denotes the population of the
infected, assumed infectious; N(t) ≡ S(t) + I(t) denotes the total population size
at generation t, N∞ denotes the demographic steady state or attracting population,
and N0 the initial point on a globally attracting cycle, when they exist. We assume
that individuals survive with constant probability γ each generation, and infected
individuals recover with constant probability (1 − σ).

Let φ : [0,∞) → [0, 1] be a monotone concave probability function with φ(0) = 1,
φ′(x) < 0, and φ′′(x) ≥ 0 for all x ∈ [0,∞). We assume that the susceptible individ-
uals become infected with nonlinear probability

(
1 − φ

(
α I

N

))
per generation, where

the transmission constant α > 0. When infections are modeled as Poisson processes,
then φ

(
α I

N

)
= e−α I

N [7, 8, 9].
Our assumptions and notation lead to the following SIS epidemic model in period

p environments:

S(t + 1) = f(t,N(t)) + γφ
(
α I(t)

N(t)

)
S(t) + γ(1 − σ)I(t),

I(t + 1) = γ
(
1 − φ

(
α I(t)

N(t)

))
S(t) + γσI(t),

⎫⎪⎬⎪⎭(4)

where 0 < γ, σ < 1 and N(t) > 0. When the environment is constant, f(t,N(t)) =
f(N(t)) and model (4) reduces to the model of Castillo-Chavez and Yakubu [7, 8, 9].
The total population in generation t + 1, S(t + 1) + I(t + 1), the sum of the two
equations of model (4), is the demographic equation (2). Using the substitution
S(t) = N(t) − I(t), the I-equation in model (4) becomes

I(t + 1) = γ

(
1 − φ

(
α
I(t)

N(t)

))
(N(t) − I(t)) + γσI(t).

Let

FN (I) = γ

(
1 − φ

(
α
I

N

))
(N − I) + γσI.

When FN has a unique positive fixed point and critical point, we denote them by IN
and CN , respectively.

I(t + 1) = FN(t)(I(t)),

and the set of iterates of the nonautonomous map FN(t) is the set of density sequences
generated by the infective equation. In the next section, we use the map FN to study
disease dynamics in the periodic SIS epidemic model, model (4).

4. Disease extinction versus disease persistence. The classical theory of
disease epidemics usually involves computation of an epidemic threshold parameter,
the basic reproductive number R0 [3]. Here, we introduce R0 and use it to pre-
dict the successful invasion or extinction of the disease modeled in (4). In constant
environments f(t,N(t)) = f(N(t)), and

R0 =
−γαφ′(0)

1 − γσ
.(5)
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R0 is the average number of secondary infections generated by an initial population
of infected (assumed infectious) individuals over their lifetimes [7, 8, 9].

In our periodic model, we use the same R0 to prove that R0 < 1 implies disease
extinction and R0 > 1 implies disease persistence. To prove this result we need the
following definition [49].

Definition 3. The total population in model (2) is persistent if

lim
t→∞

inf N(t) > 0

whenever N(0) > 0. The total population is uniformly persistent if there exists a
positive constant η such that

lim
t→∞

inf N(t) ≥ η

whenever N(0) > 0.
By this definition, when the recruitment function is either a periodic constant or

the Beverton–Holt model, the total population is uniformly persistent. Also, when
new recruits arrive at the periodic positive per-capita growth rate λt and Rd > 1, the
total population is uniformly persistent. However, the population goes extinct when
Rd < 1.

The following auxiliary lemmas will be used to prove our results.
Lemma 4. If 0 < I(t) ≤ N(t) in model (4), then I(t+1) < min{N(t), N(t+1)}.
Proof. In model (4),

I(t + 1) = γ

(
1 − φ

(
α
I(t)

N(t)

))
S(t) + γσI(t)

and

N(t + 1) = S(t + 1) + I(t + 1) = f(t,N(t)) + γN(t).

Therefore,

I(t + 1) = γ

(
1 − φ

(
α
I(t)

N(t)

))
(N(t) − I(t)) + γσI(t)

< γ(N(t) − I(t)) + γI(t) = γN(t)

= N(t + 1) − f(t,N(t)) ≤ N(t + 1).

Hence,

I(t + 1) < min{N(t), N(t + 1)}.

Lemma 5. If I(0) > 0 in model (4), then I(t) > 0 for all t ∈ Z+.

Proof. I(t + 1) = γ
(
1 − φ

(
α I(t)

N(t)

))
(N(t) − I(t)) + γσI(t). By Lemma 4, N(t) −

I(t) ≥ 0 for all t ∈ Z+. Therefore, γ
(
1 − φ

(
α I(t)

N(t)

))
(N(t) − I(t)) ≥ 0. I(0) > 0

implies γσI(0) > 0, and hence I(1) > 0. By induction, I(t) > 0 and γσI(t) > 0.
Hence, I(t + 1) > 0.

Lemma 6.

FN (I) = γ

(
1 − φ

(
α
I

N

))
(N − I) + γσI

satisfies the following conditions:
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(a) F ′
N (0) = −αγφ′ (0) + γσ and F ′

N (N) > −1.
(b) FN (I) is concave down on [0, N ].
(c) FN (I) ≤ F ′

N (0)I on [0, N ].
(d) If F ′

N (0) > 1, then FN has a unique positive fixed point IN in [0, N ].
(e) Let ΨN (I) = I

N . Then F1(ΨN (I)) = ΨN (FN (I)). That is, ΨN is a topologi-
cal conjugacy between F1 and FN .

(f) If N0 < N1 and (−αγφ′ (0) + γσ) > 1, then IN0 < IN1 where INi is the
positive fixed point of FNi in [0, Ni].

(g) If C1 exists, then CN = NC1.
(h) If N0 < N1, then FN0(I) < FN1(I) for all I ∈ (0, N0].
Proof. (a)

F ′
N (I) = −αγ

N
φ′

(
α
I

N

)
(N − I) − γ

(
1 − φ

(
α
I

N

))
+ γσ,

F ′
N (0) = −αγ

N
φ′ (0) (N − 0) − γ (1 − φ (0)) + γσ

= −αγφ′ (0) + γσ,

F ′
N (N) = −αγ

N
φ′

(
α
N

N

)
(N −N) − γ

(
1 − φ

(
α
N

N

))
+ γσ

= −γ (1 − φ (α)) + γσ > −γ > −1.

(b)

F ′′
N (I) = −

( α

N

)2

γφ′′
(
α
I

N

)
(N − I) + 2

αγ

N
φ′

(
α
I

N

)
.

Since φ′ < 0 and φ′′ ≥ 0 on [0,∞), we have

F ′′
N (I) < 0 on [0, N ].

(c) FN (0) = 0 implies that y = F ′
N (0)I is the tangent line to the graph of FN (I)

at 0. Since FN is concave down on [0, N ], its graph is below the tangent line at the
origin on [0, N ]. Hence,

FN (I) ≤ F ′
N (0)I on [0, N ].

(d) FN (N) = γσN < N . Since F ′
N (0) > 1, the graph of FN (I) starts out higher

than the diagonal and must cross it before I = N . The concavity property of FN (I)
(see (b)) implies that there is a unique positive fixed point.

(e) F1(I) = γ (1 − φ (αI)) (1 − I) + γσI. Thus,

F1(ΨN (I)) = γ

(
1 − φ

(
α
I

N

))(
1 − I

N

)
+ γσ

I

N
=

1

N
FN (I) = ΨN (FN (I)).

(f) Since F ′
N0

(0) = (−αγφ′ (0) + γσ) > 1, IN0 exists with FN0(IN0) = IN0 . Thus
ΨN0 (FN0

(IN0
)) = ΨN0

(IN0
) = F1(ΨN0

(IN0
)). That is ΨN0

(IN0
) = I1, the unique

positive fixed point of F1, and IN0 = N0I1. Similarly, IN1 = N1I1. Hence, N0 < N1

implies IN0 < IN1 .
(g) Topological conjugacy preserves critical points. The result follows from (e).
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(h) Let N0 < N1 and I ∈ (0, N0]. The topological conjugacy in part (e) shows that
FN0(I) = N0F1(

I
N0

) and FN1(I) = N1F1(
I
N1

). Note that I
N1

< I
N0

. Since the graph
of F1 goes through the origin with positive slope and is concave down, the ray through
the origin and

(
I
N1

, F1(
I
N1

)
)

has a larger slope than the ray through the origin and(
I
N0

, F1(
I
N0

)
)
. The first ray contains the point

(
I,N1F1(

I
N1

)
)
, while the second ray

contains
(
I,N0F1(

I
N0

)
)
. Hence, FN1(I) = N1F1(

I
N1

) < N0F1(
I
N0

) = FN0(I).

Theorem 7. Let the total population in model (2) be uniformly persistent.

(a) If R0 < 1, then in model (4), limt→∞ I(t) = 0 whenever I(0) ≤ N(0). That
is, the disease goes extinct.

(b) If R0 > 1, then in model (4), ∃ η > 0 such that limt→∞ inf I(t) ≥ η whenever
N(0) ≥ I(0) > 0. That is, the disease persists uniformly.

Proof. Since I(0) ≤ N(0), Lemma 4 implies that I(t) ≤ N(t) for all t ∈ Z+.

(a) R0 = −γαφ′(0)
1−γσ < 1 is equivalent to −αγφ′ (0) + γσ < 1. Lemma 6 gives

F ′
N (0) = F ′

N(t)(0) = −αγφ′ (0) + γσ < 1 and I(t + 1) = FN(t)(I(t)) ≤ F ′
N(t)(0)I(t).

Thus, the sequence {I(t)} is dominated by the geometrically decreasing sequence
{(−αγφ′ (0) + γσ)t I(0)}, and hence

lim
t→∞

I(t) = 0.

(b) Lemma 5 implies that I(t) > 0 for all t ∈ Z+. Lemma 6 gives F ′
N (0) =

F ′
N(t)(0) = −αγφ′ (0) + γσ > 1. Since I(t + 1) = FN(t)(I(t)), I(t + 1) > I(t) on

the open interval
(
0, IN(t)

)
. If I(t) ∈ (IN(t), N(t)), I(t + 1) ≥ min{IN(t) = N(t)I1,

FN(t)(N(t)) = γσN(t)}. Since the total population is uniformly persistent, ∃ η̂ > 0
satisfying limt→∞ inf N(t) ≥ η̂ whenever N(0) > 0. This implies that ∃ η > 0 such
that

lim
t→∞

inf (min{N(t)I1, γσN(t)}) ≥ η > 0.

Thus, the orbit {I(t)} increases when it is small and eventually gets larger and remains
larger than a fixed positive number. Hence, ∃ η > 0 satisfying

lim
t→∞

inf I(t) ≥ η.

A slight modification of the proof of Theorem 7 reveals that uniform persistence
can be replaced with persistence in the hypothesis and conclusion. That is, if the
total population persists, then the disease persists whenever R0 > 1.

When the recruitment function is either a periodic constant or the periodic
Beverton–Holt model, then the (total) population is uniformly persistent. If, in ad-
dition, R0 < 1, then in model (4), limt→∞ I(t) = 0, and the disease goes extinct.
However, if R0 > 1, then in model (4), limt→∞ inf I(t) ≥ η > 0, and the disease
persists uniformly (Theorem 7).

In constant environments, when the total population lives on a globally attracting
positive fixed point, R0 > 1 implies uniform persistence of the infectives on a globally
attracting positive fixed point [7, 8, 9]. With the advent of periodicity, when the
total population lives on an attracting cycle, R0 > 1 implies uniform persistence
of the infectives on a globally attracting cycle (section 5), multiple cyclic attractors
(section 8), or a chaotic attractor (section 9). We summarize these results in the
following corollary.
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Corollary 8. If the demographic equation, model (2), has a globally attracting
p-cycle (p > 1) and R0 > 1, then the uniform persistent infective population in
model (4) is not on a fixed point attractor.

Proof. By Theorem 7, the infective population in model (4) is uniformly persistent
when R0 > 1. To establish this result, we use a contradiction proof to show that the
infective population in model (4) has no positive fixed point when the demographic
equation, model (2), has a globally attracting p-cycle (p > 1).

Assume that (N(0), I(0)) is an initial condition where {I(t)} is constantly fixed
at I(0) > 0. Now I(t + 1) = FN(t)(I(t)) = I(0). Lemma 6 gives the fixed point of
FN(t) = N(t)I1 = I(0). Hence, {N(t)} is constantly fixed at N(0). Since all initial
total populations are attracted to a nontrivial cycle, we have a contraction. Hence,
the uniformly persistent infective population in model (4) is not on a fixed point
attractor.

5. Asymptotically cyclic epidemics. We now study the long-term disease
dynamics for a population living in a seasonal environment, where the p-periodic
demographic equation has a globally attracting positive cycle {N0, N1, . . . , Np−1}.
For example, when the recruitment function is either periodically constant or periodic
Beverton–Holt, the demographic equation is asymptotically cyclic (Theorems 1 and 2).
If in addition R0 > 1, we show that it is possible for the uniformly persistent epidemic
to live on a globally attracting cycle. That is, the demographic dynamics drives the
disease dynamics. To predict this long-term dynamics of the epidemic process, we use
the very general “limiting systems” theory of Franke and Yakubu [23].

The general theory of Franke and Yakubu uses the following periodic hierarchical
system:

x(t + 1) = g(t, x(t)), x(0) = x ∈ Rn
+,

y(t + 1) = h(t, x(t), y(t)), (x(0), y(0)) = (x, y) ∈ V ⊆ Rn+m
+ ,

}
(6)

where g : Z+ × Rn
+ → Rn

+ and h : Z+ × V → Rm
+ are smooth functions and where

there exist smallest positive integers T1 and T2 satisfying g(t + T1, x(t)) = g(t, x(t))
and h(t + T2, x(t), y(t)) = h(t, x(t), y(t)), respectively.

Let

V = {(N, I) : I ≤ N}.

Then V is a connected set, and for each N ∈ R+

{I ∈ R+ : (N, I) ∈ V }

is a connected set. Lemma 4 shows that the (N, I) system,

N(t + 1) = f(t,N(t)) + γN(t),

I(t + 1) = γ
(
1 − φ

(
α I(t)

N(t)

))
(N(t) − I(t)) + γσI(t),

⎫⎬⎭(7)

is an example of model (6).
System (6) is the sequence of maps {Gi}, where for each i ∈ Z+, Gi : V → V is

defined by

Gi(x, y) = (g(imod(T1), x), h(imod(T2), x, y)) ≡ (gi(x), hi(x, y)).

Gi has period T = lcm(T1, T2).
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To define a limiting system for system (6), we assume that {x0, x1, . . . , xk−1} is
a k-cycle for the T1-periodic dynamical system {g0, g1, . . . , gT1−1}. For each i ∈ Z+,
define the sets Vi = {y ∈ R

m
+ : (ximod(k), y) ∈ V }. Also, define the periodically forced

(nonautonomous) maps

Ĝi : R
n
+ × Vi → R

n
+ × Vi+1 by Ĝi(x, y) = (gi(x), hi(ximod(k), y)),

and

Ĥi : Vi → Vi+1 by Ĥi(y) = hi(ximod(k), y).

Note that

ĤkT2−1 ◦ · · · ◦ Ĥ1 ◦ Ĥo : V0 → V0.

The periodic system {Ĝ0, Ĝ1, . . . , Ĝq−1, . . . } is a limiting system of model (6) when
the k-cycle is attracting.

Inserting cycle {N0, N1, . . . , Np−1} into model (7) produces the limiting system

N(t + 1) = f(t,N(t)) + γN(t),

I(t + 1) = γ
(
1 − φ

(
α I(t)

Nt

))
(N t − I(t)) + γσI(t).

⎫⎬⎭(8)

The second equation of system (8) is FNt
(I(t)).

The following straightforward generalization of a theorem of Franke and Yakubu
gives conditions under which the long-term qualitative dynamics of the nonautono-
mous system (6) is equivalent to that of the limiting system.

Theorem 9 (see [23]). Assume that all orbits of system (6) are bounded, V is a
connected set, and for each x ∈ R

n
+

{y ∈ R
m
+ : (x, y) ∈ V }

is a connected set. Then system (6) has

{(x0, y0), (x1, y1), . . . , (xl−1, yl−1), . . . }

as a globally attracting cycle if and only if

{x0, x1, . . . , xk−1, . . . }

is a globally attracting k-cycle of the T1-periodic dynamical system {g0, g1, . . . , gT1−1}
and y0 is a globally attracting fixed point of the composition ĤkT2−1 ◦ · · · ◦ Ĥ1 ◦ Ĥo.

To apply Theorem 9, we need the following result.
Corollary 10. Assume that all orbits of system (7) are bounded. Then sys-

tem (7) has

{(N0, I0), (N1, I1), . . . , (Np−1, Ip−1), . . . }

as a globally attracting cycle if and only if {N0, N1, . . . , Np−1, . . . } is a globally at-
tracting cycle for the p-periodic dynamical system {g0, g1, . . . , gp−1}, where

gi(N) = f(i,N) + γN,
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and I0 is a globally attracting fixed point of the composition Ĥp−1 ◦ · · · ◦ Ĥ1 ◦ Ĥo,
where

Ĥi(I) = FNi
(I) = γ

(
1 − φ

(
α

I

N i

))(
N i − I

)
+ γσI.

Now we derive conditions for disease persistence on a globally attracting cycle in
periodic environments. In the following result, we prove that the disease lives on a
globally attracting cycle when F1 is a monotone map with no critical points.

Theorem 11. If F1 has no critical points in [0, 1] and R0 > 1, then the compo-
sition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle.

Proof. By Lemma 6, each FNi
is increasing, concave down, and has no critical

point on [0, N i]. R0 > 1 is equivalent to F ′
Ni

(0) > 1. FNi
(0) = 0 and FNi

(N i) =

γσN i < N i. Thus, each positive initial condition converges under FNi
iterations

monotonically to the positive fixed point. That is, FNi
has a globally attracting

positive fixed point on [0, N i].
By Lemma 4,

FNp−1
◦ · · · ◦ FN1

◦ FN0
: [0, N0] → [0, N0).

Using the chain rule on the composition map FNp−1
◦ · · · ◦FN1

◦FN0
shows that it is

increasing, concave down, and has derivative at the origin larger than 1. So, as in the
previous paragraph, FNp−1

◦ · · · ◦ FN1
◦ FN0

has a unique globally attracting positive

fixed point, I0. By Corollary 10, the uniformly persistent epidemic lives on a globally
attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle as
predicted by Theorem 11, we assume that infections are modeled as Poisson processes
[7, 8, 9]. Then φ

(
α I

N

)
= e−α I

N and

FNi
(I) = γ

(
1 − e

−α I
Ni

) (
N i − I

)
+ γσI.(9)

Example 12. In (9), set the following parameter values:

α = 2, γ = 0.9, σ = .9.

From the graph of F1 (see Figure 1) it is clear that F1 has no critical points in
[0, 1] and R0 > 1.

Hence, with these parameters, the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point, I0, and the uniformly persistent epidemic
lives on a globally attracting cycle (Theorem 11). Numerical experiments show that
this result is also true when α ∈ [1, 2.1], γ = [0.88, 1), and σ = [0.88, 1); as well as on
other intervals.
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Fig. 1. Graph of F1 satisfies the hypotheses of Theorem 11.

If in Example 12 the recruitment function is the periodic Beverton–Holt model

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)

with

μ = 2, γ = 0.9, α = 2, σ = 0.9, p = 2, k0 = 2, k1 = 8,

then, as predicted by Theorem 11, the total population, susceptible population, and
infective population live on the globally attracting 2-cycle

{(8.087, 1.903, 6.184), (7.788, 1.437, 6.351)}.

In the following result, we prove that the disease lives on a globally attracting
cycle when F1 has a critical point with an image (under F1 iteration) smaller than
the critical point.

Theorem 13. Let F1 have a critical point, C1, in (0, 1). If

C1 > F1(C1), Fmax{Ni}(Cmax{Ni}) < Cmin{Ni},

and R0 > 1, then the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each FNi
is increasing, concave down,

and has no critical point on [0, Fmax{Ni}(Cmax{Ni})]. Since C1 > F1(C1), I1 < C1 and

F1 is increasing on [I1, C1]. Consequently, I1 < F1(C1), and by topological conjugacy
and Lemma 6, INi

< FNi
(CNi

) ≤ Fmax{Ni}(Cmax{Ni}) < Cmin{Ni}. Further, R0 > 1

is equivalent to F ′
Ni

(0) > 1. Thus, each positive initial condition converges under

FNi
iterations monotonically to the positive fixed point. That is, FNi

has a globally
attracting positive fixed point on [0, Fmax{Ni}(Cmax{Ni})].

By the preceding arguments,

FNp−1
◦ · · · ◦ FN1

◦ FN0
: [0, Fmax{Ni}(Cmax{Ni})] → [0, Fmax{Ni}(Cmax{Ni})).



1574 JOHN E. FRANKE AND ABDUL-AZIZ YAKUBU

Fig. 2. Graphs of F1 and F0.99 satisfy the hypotheses of Theorem 13.

Using the chain rule on the composition map FNp−1
◦ · · · ◦FN1

◦FN0
shows that it is

increasing, concave down, and has derivative at the origin larger than 1. So, as in the
previous paragraph, FNp−1

◦ · · · ◦ FN1
◦ FN0

has a unique globally attracting positive

fixed point on [0, Fmax{Ni}(Cmax{Ni})]. Since Fmax{Ni}(Cmax{Ni}) is the maximum
value of all the FNi

, every point immediately gets into [0, Fmax{Ni}(Cmax{Ni})], and
the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point, I0. By Corollary 10, the uniformly
persistent epidemic lives on a globally attracting cycle.

Next we demonstrate, via a specific example, disease persistence on a globally
attracting cycle, as predicted by Theorem 13.

Example 14. In (9), set the following parameter values:

α = 7, γ = 0.25, σ = 0.25, max{N i} = 1, min{N i} = .99.

From the graphs of Fmax{Ni} and Fmin{Ni} (see Figure 2) it is clear that C1 > F1(C1),

Fmax{Ni}(Cmax{Ni}) < Cmin{Ni},

and R0 > 1.
Hence, with these parameters, the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle. Numerical experiments show that this result is
also true when α ∈ [7, 10], γ = [0.15, 0.25], σ = [0.15, 0.25], and NJ ∈ [0.9, 1]; as well
as on other intervals.

If in Example 14 the recruitment function is the periodic Beverton–Holt model

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)

with

μ = 2, γ = 0.25, α = 7, σ = 0.25, p = 2, k0 = 0.665, k1 = 0.965,
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then

max{N i} = 0.995, min{N i} = 0.905,

and, as predicted by Theorem 13, the total population, susceptible population, and
infective population live on the globally attracting 2-cycle

{(0.995, 0.860, 0.135), (0.905, 0.765, 0.140)}.

Next, we prove that the disease lives on a globally attracting cycle when F1 has
a critical point with an image (under F1 iteration) bigger than the critical point.

Theorem 15. Let F1 have a critical point, C1, in (0, 1). If

C1 < F1(C1), Fmax{Ni}(Cmax{Ni}) < min{N i},

Cmax{Ni} < Fmin{Ni} ◦ Fmax{Ni}(Cmax{Ni}),

and R0 > 1, then the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each FNi
is decreasing on [CNi

, N i] ⊇
[Cmax{Ni}, Fmax{Ni}(Cmax{Ni})] and FNi

(Cmax{Ni}) ≤ Fmax{Ni}(Cmax{Ni}). By our
hypothesis, Cmax{Ni} < Fmin{Ni} ◦Fmax{Ni}(Cmax{Ni}) ≤ FNi

◦Fmax{Ni}(Cmax{Ni}).
Thus, each FNi

is decreasing on [Cmax{Ni}, Fmax{Ni}(Cmax{Ni})] and sends this in-
terval into itself. Consequently, each FNi

has a fixed point INi
in this interval. Since

F ′
Ni

(I) ∈ (−1, 0] for all I ∈ [Cmax{Ni}, Fmax{Ni}(Cmax{Ni})] and N i ∈ {N0, N1, . . . ,

Np−1} (Lemma 6), each FNi
is a contraction on this interval. This implies that

FNp−1
◦ · · · ◦ FN1

◦ FN0
is a contraction with a unique fixed point, which is I0.

By Lemma 6 and our hypothesis, FNi
(I) < FNi

(CNi
) ≤ Fmax{Ni}(Cmax{Ni}) <

min{N i} for all I ∈ [0, N i] and N i ∈ {N0, N1, . . . , Np−1}. FNi
(I) > I for all

I ∈ (0, INi
). Thus, all positive points below Cmax{Ni} increase until they are in

[Cmax{Ni}, Fmax{Ni}(Cmax{Ni})]. Consequently, FNp−1
◦ · · · ◦ FN1

◦ FN0
has a glob-

ally attracting positive fixed point, I0, and by Corollary 10, the uniformly persistent
epidemic lives on a globally attracting cycle.

Now we demonstrate, via a specific example, disease persistence on a globally
attracting cycle, as predicted by Theorem 15.

Example 16. In (9) set the following parameter values:

α = 20, γ = 0.5, σ = .5, max{N i} = 1, min{N i} = .7.

From the graphs of Fmax{Ni} and Fmin{Ni} (see Figure 3) it is clear that

C1 < F1(C1), Fmax{Ni}(Cmax{Ni}) < min{N i},

Cmax{Ni} < Fmin{Ni} ◦ Fmax{Ni}(Cmax{Ni}),

and R0 > 1.
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Fig. 3. Graphs of F1 and F0.7 satisfy the hypotheses of Theorem 15.

Hence, with these parameters, the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle. Numerical experiments show that this result is
also true when α ∈ [15, 25], γ = [0.45, 0.6), σ = [0.45, 0.6), and NJ ∈ [0.7, 1]; as well
as on other intervals.

If in Example 16 the recruitment function is the periodic Beverton–Holt model

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)

with

μ = 2, α = 20, γ = 0.5, σ = .5, p = 2, k0 = 0.1, k1 = 0.9,

then

max{N i} = 0.917, min{N i} = 0.741,

and, as predicted by Theorem 15, the total population, susceptible population, and
infective population live on the globally attracting 2-cycle

{(0.917, 0.644, 0.273), (0.741, 0.352, 0.389)}.

In all the above examples, we use the periodic Beverton–Holt model as the recruit-
ment function to highlight uniform persistence via attracting cycles. Similar examples
can be obtained using the periodic constant recruitment function.

6. Uniform persistence and geometric demographics. When new recruits
arrive at the periodic positive per-capita growth rate λt, the demographic long-term
dynamics is determined by the demographic basic reproductive number Rd (see (3)).
In this case, we use proportions to study the epidemic process. We introduce the new
variables

s(t) =
S(t)

N(t)
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and

i(t) =
I(t)

N(t)
.

In the new variables, when f(t,N) = λtN , then

N(t + 1) = (λt + γ)N(t),

and model (4) becomes

s(t + 1) = λt

λt+γ + γφ(αi(t))
λt+γ s(t) + γ(1−σ)

λt+γ i(t),

i(t + 1) = γ(1−φ(αi(t)))
λt+γ s(t) + γσ

λt+γ i(t).

⎫⎬⎭(10)

Since i(t)+s(t) = 1 for all t, the substitution s(t) = 1−i(t) reduces the i-equation
of the system to the one-dimensional nonautonomous equation

i(t + 1) =
γ (1 − φ (αi(t)))

λt + γ
(1 − i(t)) +

γσ

λt + γ
i(t).

Let

F̃λ(i) =
γ (1 − φ (αi))

λ + γ
(1 − i) +

γσ

λ + γ
i.

Since i ≤ 1,

F̃λ(i) < 1 and F̃λ(i) =
1

λ + γ
F1(i).

By Lemma 6,

F̃ ′
λ(0) =

−αγφ′ (0) + γσ

λ + γ

and (
F̃λp−1

◦ · · · ◦ F̃λ1 ◦ F̃λ0

)′
(0) =

(−αγφ′ (0) + γσ)
p∏p−1

t=0 (λt + γ)
.

Let

R0 =
−αγφ′ (0)

(Rd(1 − γp) + γp)
1
p − γσ

.

If Rd = 1, the total population is bounded and uniformly persistent, and R0 reduces

to −αγφ′(0)
1−γσ , which is (5). We will prove that R0 > 1 implies that i(t) persists, and

R0 < 1 implies limt→∞ i(t) = 0. First, we obtain local stability results when R0 
= 1.

Lemma 17. R0 > 1 is equivalent to
(
F̃λp−1 ◦ · · · ◦ F̃λ1

◦ F̃λ0

)′
(0) > 1, and R0 < 1

is equivalent to
(
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)′
(0) < 1.

Proof. Assume R0 > 1; then

−αγφ′ (0)

(Rd(1 − γp) + γp)
1
p − γσ

> 1.
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Since −αγφ′ (0) > 0, (Rd(1−γp)+γp)
1
p −γσ > 0 and −αγφ′ (0) > (Rd(1−γp)+γp)

1
p −

γσ. This implies that

(−αγφ′ (0) + γσ)
p
> Rd(1 − γp) + γp =

∏p−1
J=0 (λJ + γ) − γp

1 − γp
(1 − γp) + γp

=

p−1∏
J=0

(λJ + γ) .

Hence, (
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)′
(0) =

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)
> 1.

Since all the steps are reversible, R0 > 1 is equivalent to
(
F̃λp−1

◦· · ·◦F̃λ1
◦F̃λ0

)′
(0) > 1.

To prove the other inequality, note that (Rd(1−γp)+γp)
1
p −γσ > (γp)

1
p −γσ > 0,

and proceed as in the proof of the last inequality.
Theorem 18. Let

f(t,N) = λtN

in model (2), where λt+p = λt.
(a) If R0 < 1, then in model (10), limt→∞ i(t) = 0. That is, the proportion of

infectives in the total population goes extinct.
(b) If R0 > 1, then in model (10), ∃ η > 0 satisfying limt→∞ inf i(t) ≥ η. That

is, the proportion of infectives in the total population uniformly persists.
Proof. (a) Lemma 17 shows that R0 < 1 implies(

F̃λp−1 ◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) =

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)
< 1.

Let i > 0; then F̃λ(i) = 1
λ+γF1(i) < 1

λ+γF
′
1(0)i = −αγφ′(0)+γσ

λ+γ i, by Lemma 6. Using
this p times gives

i(p) =
(
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)
(i(0)) <

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)
i(0) < i(0).

Thus, the sequence {i(tp)} is dominated by the geometrically decreasing sequence⎧⎨⎩
(

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)

)t

i(0)

⎫⎬⎭
and hence, by continuity of the system,

lim
t→∞

i(t) = 0.

(b) Lemma 17 shows that R0 > 1 implies(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) > 1.
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Since
(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)
(0) = 0, the graph of F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

starts out

above the diagonal. Since for each λJ and each i ∈ [0, 1], F̃λJ
(i) < 1,

(
F̃λp−1

◦ · · · ◦
F̃λ1 ◦ F̃λ0

)
(1) < 1. Thus F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 has at least one positive fixed point.

Let i∗ be the minimum of these positive fixed points; then i((t + 1)p) > i(tp) when
i(tp) is in the open interval (0, i∗).

Let

m = min
{(

F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)
(i) : i ∈ [i∗, 1]

}
.

Note that m > 0. If i(tp) ∈ (0,m), then i((t + 1)p) > i(tp), and the sequence {i(tp)}
continues to increase until the value is at least m. But then the sequence can never
jump lower than m. Hence,

lim
t→∞

inf i(tp) ≥ m.

Now each of the maps F̃λ0 , F̃λ1 ◦ F̃λ0 , . . . , F̃λp−1 ◦· · ·◦ F̃λ1 ◦ F̃λ0 has positive minima on
[m, 1], and limt→∞ inf i(t) is at least the minimum of these minima. Hence, ∃ η > 0
satisfying

lim
t→∞

inf i(t) > η.

7. Cyclic attractors and geometric demographics. We assume that the
total population is growing geometrically. That is, the recruitment function in the
p-periodic demographic equation is f(t,N(t)) = λtN(t). If, in addition,

R0 =
−αγφ′ (0)

(Rd(1 − γp) + γp)
1
p − γσ

> 1,

we show that it is possible for the persistent i-population to live on a globally attract-
ing cycle. This implies that both the i-dynamics under periodic geometric recruitment
function and the I-dynamics under either periodic constant or periodic Beverton–Holt
recruitment functions are capable of living on globally attracting cycles.

Next, we prove that the proportion of infectives live on a globally attracting cycle
when F̃λt is a monotone map with no critical points.

Theorem 19. If each F̃λt has no critical points in [0, 1] and R0 > 1, then the
composition map

F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0

has a globally attracting positive fixed point i0, and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

Proof. By Lemma 6 each F̃λt(i) = 1
λt+γF1(i) is increasing, concave down, and has

no critical point on [0, 1]. Hence, F̃λp−1
◦· · ·◦F̃λ1

◦F̃λ0
is also increasing, concave down,

and has no critical point on [0, 1]. R0 > 1 is equivalent to
(
F̃λp−1

◦· · ·◦F̃λ1
◦F̃λ0

)′
(0) >

1. Since (
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)
(0) = 0,

F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
has a fixed point in (0, 1). Thus, each positive initial condition

converges monotonically under iteration of F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
to the positive fixed
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point. That is, F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
has a globally attracting positive fixed point

on [0, 1], and the uniformly persistent proportion of infectives in the total population
lives on a globally attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle
as predicted by Theorem 19, following Example 12, we assume that infections are
modeled as Poisson processes [7, 8, 9]. Then φ (αi) = e−αi, φ′ (0) = −1, and

F̃λ(i) =
γ
(
1 − e−αi

)
λ + γ

(1 − i) +
γσ

λ + γ
i.(11)

Example 20. In (11), set the following parameters:

α = 2, γ = 0.9, σ = 0.9, λ0, λ1 ∈ [0.1, 0.75].

As in Example 12, F̃λ has no critical point in [0, 1]. For the special case α = 2,
γ = 0.9, σ = 0.9, λ0 = 0.5, and λ1 = 0.6 the proportion of infectives in the total
population lives on the stable period 2 orbit {0.447, 0.469} (see Theorem 19).

Now, we prove that the disease lives on a globally attracting cycle when F1 has a
critical point with an image (under F̃max{λt} iteration) smaller than the critical point.

Theorem 21. Let each Fλ have a critical point, C1, in (0, 1). If

F̃min{λt}(C1) < C1

and R0 > 1, then the composition map

F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

has a globally attracting positive fixed point i0, and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each F̃λt
(i) = 1

λt+γF1(i) has C1 as its

only critical point on [0, 1], is increasing on [0, C1], and concave down on [0, 1]. We
also have

F̃max{λt}(i) ≤ F̃λt(i) ≤ F̃min{λt}(i).

Since F̃min{λt}(C1) < C1, the image of each F̃λt
is in [0, C1). Thus, F̃λp−1

◦· · ·◦F̃λ1
◦F̃λ0

has C1 as its only critical point, and its image is in [0, C1). Hence, F̃λp−1 ◦· · ·◦F̃λ1 ◦F̃λ0

is increasing and concave down on [0, C1].

R0 > 1 is equivalent to
(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) > 1. Since

(
F̃λp−1

◦ · · · ◦
F̃λ1 ◦ F̃λ0

)
(0) = 0, F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 has a fixed point in (0, C1). Thus, each

positive initial condition gets into [0, C1] and converges monotonically under iteration

of F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 to the positive fixed point. That is, F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 has
a globally attracting positive fixed point on (0, 1], and the uniformly persistent pro-
portion of infectives in the total population lives on a globally attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle
as predicted by Theorem 21, following Example 14, we assume that infections are
modeled as Poisson processes [7, 8, 9].

Example 22. In (11), set the following parameter values:

α ∈ [7, 10], γ ∈ [0.15, 0.25], σ ∈ [0.15, 0.25], λ0, λ1 ∈ [0.85, 1.0].



SIS MODEL IN SEASONAL ENVIRONMENTS 1581

As in Example 14, all the conditions of Theorem 21 are satisfied. For the special
case α = 7, γ = 0.25, σ = 0.25, λ0 = 0.85, and λ1 = 0.95 the proportion of infectives in
the total population lives on the stable period 2 orbit {0.107, 0.113} (see Theorem 21).

Next, we prove that the disease lives on a globally attracting cycle when F1 has a
critical point with an image (under F̃max{λt} iteration) bigger than the critical point.

Theorem 23. Let F1 have a critical point, C1, in (0, 1). If

C1 < F̃max{λt} ◦ F̃min{λt}(C1),

then R0 > 1, and the composition map

F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0

has a globally attracting positive fixed point i0, and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each F̃λt
(i) = 1

λt+γF1(i) has C1 as its

only critical point on [0, 1], is increasing on [0, C1], and concave down on [0, 1]. We
also have

F̃max{λt}(i) ≤ F̃λt
(i) ≤ F̃min{λt}(i).

Since C1 < F̃max{λt} ◦ F̃min{λt}(C1) < F̃max{λt}(C1) ≤ F̃λt(C1) and F̃λt(0) = 0, each

F̃ ′
λt

(0) > 1. Hence,
(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) > 1 and, by Lemma 17, R0 > 1.

By our hypothesis, C1 < F̃max{λt} ◦ F̃min{λt}(C1) ≤ F̃λt
◦ F̃min{λt}(C1) and

F̃λt
(C1) ≤ F̃min{λt}(C1) for each λt. Thus, each F̃λt

is decreasing on [C1, F̃min{λt}(C1)]

and sends this interval into itself. Consequently, each F̃λt
has a fixed point iλt

in this
interval:

F̃ ′
λi

(i) =
1

λi + γ
F ′

1(i) =
1

λi + γ
(−αγφ′ (αi) (1 − i) − γ (1 − φ (αi)) + γσ)

>
−γ

λi + γ
> −1.

Hence, F̃ ′
λi

(i) ∈ (−1, 0] for all i ∈ [C1, F̃min{λt}(C1)] and all λi. Each F̃λi is a contrac-

tion on this interval. This implies that F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
is a contraction with a

unique fixed point in [C1, F̃min{λt}(C1)]. Thus, all positive points below C1 increase

until they are in [C1, F̃min{λt}(C1)]. Consequently, F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
has a glob-

ally attracting positive fixed point on (0, 1], and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle
as predicted by Theorem 23, following Example 16, we assume that infections are
modeled as Poisson processes [7, 8, 9].

Example 24. In (11), set the following parameter values:

α ∈ [15, 25], γ ∈ [0.45, 0.6], σ ∈ [0.45, 0.6], λ0, λ1 ∈ [0.7, 1.0].

As in Example 16, all the conditions of Theorem 23 are satisfied. For the special case
α = 20, γ = 0.5, σ = 0.5, λ0 = 0.8, and λ1 = 0.9 the proportion of infectives in the
total population lives on the stable period 2 orbit {0.289, 0.327} (see Theorem 23).
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Fig. 4. Two attracting 4-cycles (multiple attractors). Red and black attractors.

8. Multiple attractors. In constant environments, single patch discrete-time
epidemic models typically support only one attractor [7, 8, 9]. Henson and coworkers
[30, 31, 32, 33], Franke and Selgrade [22], and Franke and Yakubu [24] found multiple
attractors in periodically forced models, where the corresponding models in constant
environments have no multiple attractors. These multiple attractors are a result of
periodic perturbations of the corresponding models in constant environments. In this
section, we illustrate that our periodically forced discrete-time single patch epidemic
model can generate multiple (coexisting) attractors. In this situation, the long-term
disease dynamics depends on initial conditions.

Periodicity is not the only mechanism for generating multiple attractors. Migra-
tion and age-structure are known to induce multiple attractors in population models
[5, 7, 9, 28, 29, 48, 50]. Also, epidemic models with “backward” bifurcations support
multiple attractors [27, 47].

Example 25. Consider model (7) with 4-periodic constant recruitment function

f(t,N) = kt(1 − γ)

and

φ

(
αI

N

)
= e−

αI
N ,

where

α = 250, γ = 0.4, σ = 0.02, k0 = 1, k1 = 200, k2 = 1, k3 = 210.

Example 25 has two coexisting 4-cycle attractors, a “red” attractor at

{(60.32, 52.44), (144.13, 3.57), (58.25, 56.14), (149.30, 1.29)}

and a “black” attractor at

{(60.32, 58.19), (144.13, 1.32), (58.25, 51.32), (149.30, 3.18)}.

In this example, the total population is on a globally attracting 4-cycle, while the
infective population is on multiple 4-cycle attractors. That is, the disease dynamics
has multiple outcomes, while the total population has a single long-term dynamics.
Figure 4 displays the two attracting 4-cycles.
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Fig. 5. As k1 varies between 3600 and 4300, the infective population in Example 26 undergoes
period-doubling bifurcations route to chaos.

9. Nonchaotic demographic dynamics generates chaotic disease dy-
namics. In constant environments, the demographic dynamics is capable of driving
the disease dynamics [1, 2, 7, 8, 9]. That is, when the total population (in the absence
of the disease) is on a cycle of period k, the population of infectives (in the presence
of the disease) is also on a cycle of the same period k, albeit the amplitude of the
total population is much larger than that of the infected population.

Our demographic equation with periodic constant or periodic Beverton–Holt
or periodic geometric recruitment function can have either asymptotically bounded
growth via globally attracting cycles (constant or Beverton–Holt models) or geometric
growth (geometric model). In this section, we use numerical simulations to illustrate
that the periodic epidemic model (4) can generate chaotic attractors where the peri-
odic recruitment function is periodic constant or the periodic Beverton–Holt or peri-
odic geometric function [39, 40, 41, 42, 43, 44, 45]. That is, in periodic environments,
the demographic dynamics does not always drive the disease dynamics. We illustrate
these cases in the following three examples.

Example 26. Consider model (7) with 2-periodic constant recruitment function

f(t,N) = kt(1 − γ),

φ

(
αI

N

)
= e−

αI
N ,

and

α = 250, γ = 0.44, σ = 0.002, k0 = 1, 3600 ≤ k1 ≤ 4300.

Figure 5 shows parameter regimes of chaotic dynamics in the infective population
of Example 26, where the total population is on a cyclic (nonchaotic) attractor. In
this example, the recruitment function is a 2-periodic constant function. Next, we
use numerical simulations to illustrate chaotic dynamics in the infective population
where the recruitment function is the periodic Beverton–Holt model.

Example 27. Consider model (7) with 2-periodic geometric growth model

f(t,N) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)
,



1584 JOHN E. FRANKE AND ABDUL-AZIZ YAKUBU

Fig. 6. As k1 varies between 30000 and 85000, the infective population in Example 27 undergoes
period-doubling bifurcations route to chaos.

φ

(
αI

N

)
= e−

αI
N ,

and

α = 250, γ = 0.44, σ = 0.002, μ = 2, k0 = 1, 30000 ≤ k1 ≤ 85000.

As we vary k1 between 30000 and 85000, Figure 6 shows the infective population
undergoing period-doubling bifurcations route to chaos. As in Figure 5, Figure 6
shows parameter regimes of chaotic dynamics in the infective population of Exam-
ple 27, where the total population is governed by the 2-periodic Beverton–Holt model
(nonchaotic dynamics). Next, we use numerical simulations to illustrate chaotic dy-
namics in the infective population where the recruitment function is the periodic
geometric growth model.

Example 28. Consider model (7) with 2-periodic geometric growth model

f(t,N) = λtN

and

φ

(
αI

N

)
= e−

αI
N ,

where

α = 250, γ = 0.44, σ = 0.002, λ0 = 0.0004, 0.3 ≤ λ1 ≤ 1.5.

As λ1 varies between 0.3 and 1.5, the infective population in Example 28 under-
goes period-doubling bifurcations route to chaos. As in Figures 5 and 6, Figure 7
shows parameter regimes of chaotic dynamics in the infective population of Exam-
ple 28, where the total population is under geometric (nonchaotic) growth.

In periodic environments, Examples 26, 27, and 28 show that demographics dy-
namics does not always drive disease dynamics. In particular, they illustrate chaotic
disease dynamics in the absence of chaotic dynamics in the demographic equation.
These examples have only highlighted some of the complex interactions between dis-
ease and demographics dynamics in periodic environments.
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Fig. 7. As λ1 varies between 0.3 and 1.5, the infective population in Example 28 undergoes
period-doubling bifurcations route to chaos.

10. Conclusion. The study of the combined effects of seasonal trends and dis-
eases on the extinction and persistence of discretely reproducing populations has
received little attention. The focus has been on the impact of diseases on populations
in constant (nonseasonal) environments [1, 2, 3, 7, 8, 9]. Most species live in seasonal
environments, and the neglect of seasonal factors is apt to lead to a misunderstanding
of how the population is interacting with its environment [26]. In this paper, we focus
on the joint impact of periodic environments and disease epidemics on life-history
outcomes of discretely reproducing populations. We formulated and analyzed a peri-
odically forced discrete-time SIS epidemic model via the epidemic threshold parameter
R0. We also investigated the relationship between the predisease invasion population
dynamics and the diseases dynamics.

Fixed point (nonoscillatory) dynamics are rare in periodic environments. We use
the periodic Beverton–Holt, the periodic constant, and the periodic Malthus (geomet-
ric growth) models as recruitment functions to highlight disease (uniform) persistence
on globally attracting cycles whenever R0 > 1. The disease persists on fixed point
attractors in the corresponding autonomous epidemic models [7, 8, 9].

In constant environments, Castillo-Chavez and Yakubu, in an earlier work, showed
that the SIS discrete-time epidemic model supports only one attractor [7, 8, 9]. That
is, the long-term epidemic dynamics is independent of initial population sizes. It is
known that periodically forced (nonautonomous) population models without explicit
disease dynamics are capable of generating multiple attractors via cusp bifurcations,
where the corresponding autonomous models do not have multiple attractors [24].
In periodic environments, we use numerical simulations to show that the SIS model
supports multiple attractors. That is, in periodic environments, the ultimate disease
dynamics depends on initial population sizes. Seasonality is not the only mechanism
for generating multiple attractors. Dispersal and age-structure are other factors that
lead to the creation of multiple attractors in constant environments.

Castillo-Chavez and Yakubu, in [7, 8, 9], used the autonomous SIS discrete-time
epidemic model to answer the following questions. Will the infective population sur-
vive? And if it does, will it settle on a particular attractor? What is the relationship
between the population and epidemic attractors? Castillo-Chavez and Yakubu showed
that in constant environments, infectives can survive on cyclic attractors. The period
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of the (predisease invasion) population attractor is the same as the period of the in-
fective population. In this paper, we show that it is possible for the disease dynamics
to be chaotic, where the (predisease invasion) population is cyclic and nonchaotic.
That is, with the advent of seasonality the demographic dynamics does not always
drive the disease dynamics.
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