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Periodically forced (non-autonomous) single species population models support multiple attractors via
tangent bifurcations, where the corresponding autonomous models support single attractors. Elaydi and
Sacker obtained conditions for the existence of single attractors in periodically forced discrete-time
models. In this paper, the Cusp Bifurcation Theorem is used to provide a general framework for the
occurrence of multiple attractors in such periodic dynamical systems.
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1. Introduction

Many population models support multiple attractors or alternative life history outcomes

[1,2,4,10,15,16,19–21,38,39]. In a recent paper, Yakubu studied the mathematical and

biological mechanisms that generate multiple attractors in discrete-time autonomous

juvenile-adult population models [38]. Henson [19], Franke and Selgrade [10] have used

periodicity as a mechanism for generating multiple attractors in discrete-time

nonautonomous population models. The flour beetle, Tribolium, is an example of a natural

population that supports multiple attractors [19–24].

This paper is on an explanation for multiple attractors in discrete-time nonautonomous

single species population models. In particular, we use the Cusp Bifurcation Theorem to

show that simple nonautonomous population models are capable of generating multiple

attractors through a tangent bifurcation, where the corresponding autonomous models

support single attractors (no multiple attractors) [26].

Others have studied discrete-time nonautonomous population models [4,5,7,8,14,

19–21,27,37]. In recent papers, Elaydi and Sacker [7,8] proved that for a k-periodic

dynamical system, if a periodic orbit of period r is globally asymptotically stable (no multiple

attractors) then r must be a divisor of k. This result is an extension of a result of Elaydi and

Yakubu [9] on the characterization of global attractors for discrete-time autonomous models.

In Section 2, we introduce discrete-time autonomous and nonautonomous single-species

population models. We use the response of a single species population to a T-periodic

fluctuating environment to generate T-periodic dynamical systems. Such systems consist of
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T maps, and in Section 3 we prove that cyclic compositions of the T maps are semi-conjugate.

In Section 4, we use the Cusp Bifurcation Theorem to show that T-periodic dynamical

systems are capable of generating multiple attractors via tangent bifurcation. In Section 5,

a specific 2-periodic dynamical system based on the classic Ricker model is used to display

the creation of multiple attractors via the tangent bifurcation. The results of this manuscript

are discussed in Section 6.

2. Population models in periodically varying environments

Single species, single patch, autonomous ecological models of the general form

xtþ1 ¼ xtgðxtÞ ð1Þ

have been used to study the long-term dynamics of discretely reproducing closed

populations, where xt is the population size at generation t and the map g : ½0;1Þ! ½0;1Þ is

the per capita growth rate [3,6,9–13,17,18,25,28–34]. The Ricker model,

xtþ1 ¼ xtexpðr 2 xtÞ;

and the Beverton-Holt model,

xtþ1 ¼
mKxt

K þ ðm2 1Þxt
;

are examples of Model (1); where m . 1; K and r are positive constants [28–34,36–39].

To account for a periodic fluctuating environment, the dynamics at generation t of the

discretely reproducing population is typically modeled by the nonautonomous equation

xtþ1 ¼ xtgðt; xtÞ; ð2Þ

where the per capita growth rate, g : Zþ £ ½0;1Þ! ð0;1Þ; is assumed to be positive and

differentiable ðC1 on ½0;1ÞÞ; and where there exists a smallest positive integer T satisfying

gðt þ T ; xÞ ¼ gðt; xÞ: That is, in this case g is periodic with period T. The nonautonomous

Ricker model,

xtþ1 ¼ xt exp ðrt 2 xtÞ;

and the nonautonomous Beverton-Holt model,

xtþ1 ¼
mKtxt

Kt þ ðm2 1Þxt
;

are examples of Model (2); where rtþT ¼ rt; KtþT ¼ Kt for all t [ Zþ:

To study the population dynamics of Model (2), we consider a general smooth function

f : Zþ £ ½0;1Þ! ð0;1Þ

that generates the nonautonomous difference equation

xtþ1 ¼ f ðt; xtÞ; t [ Zþ

where f ðt þ T ; xÞ ¼ f ðt; xÞ for all t . 0: For a simpler notation, we denote f ðt; xtÞ by f tðxtÞ:
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Consequently,

xtþ1 ¼ f tðxtÞ

for all t [ Zþ: We use the following definitions and examples to explore the long-term

behavior of initial conditions under f– iterations.

Definition 1 A T–periodic dynamical system is a finite sequence of T maps.

For an example of a T-periodic dynamical system, define the one-dimensional function

f t : ½0;1Þ! ½0;1Þ

by

f tðxÞ ¼ xgðt; xÞ;

for each t [ {0; 1; 2; . . .; T 2 1}: For t $ T ; let f tðxÞ ¼ f tmodðTÞðxÞ: Then the sequence of

single species maps { f 0; f 1; . . .; f t; . . .} from [0,1) to [0,1) is a T-periodic dynamical

system. To model intraspecific competition, it is assumed that g is strictly decreasing in the

second coordinate (that is, gðt; xÞ . gðt; yÞ whenever x , y). In addition gðt; 0Þ . 1 and

limx!1gðt; xÞ , 1 for each t [ {0; 1; . . .; T 2 1}: Then f tðxÞ ¼ xgðt; xÞ describes

the population dynamics of a pioneer species in a periodically fluctuating environment

[10–13].

Since g is a strictly decreasing continuous function (in the second coordinate), for each

t [ {0; 1; 2; . . .; T 2 1}; f tðxÞ ¼ xgðt; xÞ has a unique positive fixed point denoted by Xt1:

Furthermore, f tðxÞ . x whenever 0 , x , Xt1 and f tðxÞ , x whenever x . Xt1:

Consequently, It ; f tð½0;Xt1�Þ is a global attractor under f t iterations.

Definition 2 The orbit of the point x0 [ ½0;1Þ under the T–periodic dynamical system is

{x0; f 0ðx0Þ; f 1ðx1Þ; . . .; f tðxtÞ; . . .} or {x0; x1; x2; . . .; xt; . . .}:

Definition 3 A point x0 is a fixed point for the T-periodic dynamical system

{f 0; f 1; . . .; f t; . . .} if its orbit is {x0; x0; x0; . . .}:

Lemma 1 If for some i – j; fi and fj have no common fixed points, then the T-periodic

dynamical system {f 0; f 1; . . .; f t; . . .} has no fixed points.

Proof Suppose x is a fixed point for the T-periodic dynamic dynamical system

{ f 0; f 1; . . .; f T21}: Then f kðxÞ ¼ x for each k. That is, x is a fixed point of each fk. This

contradicts fi and fj not having a common fixed point. A

By Lemma 1, non-oscillatory equilibrium dynamics are rare in T-periodic dynamical

systems.

Definition 4 An orbit {x0; x1; . . .xt; . . .} is a k-cycle of the T-periodic dynamical system

{f 0; f 1; . . .; f t; . . .} if xt ¼ xtmodðkÞ for all t [ Zþ and k is the smallest such integer.

In Section 5, we use the nonautonomous Ricker model to illustrate stable cycles in a

2-periodic dynamical system (see figure 2).
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3. Semi-conjugacy in periodic dynamical systems

A T-periodic dynamical system generates T maps {f 0; f 1; . . .; f T21}: In this section, we show

that cyclic compositions of these maps are semi-conjugate and have the same number of

k-cycles. In Theorem 6 and Corollary 7, we display that attracting cycles of T-periodic

dynamical systems are locally asymptotically stable.

Lemma 2 The T cyclic compositions f T21 + . . . + f 1 + f 0; f T + . . . + f 2 + f 1; . . .; f 2T22 + . . . +

f T + f T21 are semi-conjugate to each other.

Proof Since ð f T + f T21 + . . . + f 1Þ + f 0 ¼ f T + ðf T21 + . . . + f 1 + f 0Þ and f T ¼ f 0 we see that f0 is a

semi-conjugacy between f T + f T21 + . . . + f 1 and f T21 + . . . + f 1 + f 0: Similar proofs show that the

rest of the compositions are also semi-conjugate. A

Theorem 3 Each of the T- cyclic compositions have the same number of periodic points of

each period.

Proof If x and y are two periodic points of f T21 + . . . + f 1 + f 0 with the same prime period

k . 1; then f0(x) and f0(y) are fixed points of ðf 0 + f T21 + . . . + f 1Þ
k: Since

x ¼ ð f T21 + . . . + f 1 + f 0Þ
k21 + f T21 + . . .f 1ð f 0ðxÞÞ ð3Þ

y ¼ ð f T21 + . . . + f 1 + f 0Þ
k21 + f T21 + . . .f 1ð f 0ðyÞÞ ð4Þ

then f0(x) and f0(y) are not equal. Composing both sides of equations (3) and (4) with f0 gives

f 0ðxÞ ¼ ð f 0 + f T21 + . . . + f 1Þ
kð f 0ðxÞÞ ð5Þ

and

f 0ðyÞ ¼ ð f 0 + f T21 + . . . + f 1Þ
kð f 0ðyÞÞ: ð6Þ

Therefore, f0(x) and f0(y) are fixed points of f 0 + f T21 + . . . + f 1Þ
k: That is, the number of fixed

points of ðf T21 + . . . + f 1 + f 0Þ
k is not more than that of ðf 0 + f T21 + . . . + f 1Þ

k: Repeating this

process using equations (5) and (6) with f1 shows the number of fixed points of

ðf 0 + f T21 + . . . + f 1Þ
k: is not more than that of ðf 1 + f 0 + f T21 + . . . + f 2Þ

k. Continuing this process

shows the number of fixed points of ðf i21 + . . . + f T21 + . . . + f iÞ
k is not more than that of

ðf i + . . . + f 0 + f T21 + . . . + f iþ1Þ
k: That is, since this process is periodic each cyclic composition

raised to the k-th power has the same number of fixed points. A

Lemma 4 If the orbit of x is k-cycle for the T-periodic dynamical system {f 0; f 1; . . .; f t; . . .};

Then f0(x) is a k-cycle for the T-periodic dynamical system { f 1; f 2; . . .; f tþ1; . . .}:

Proof Since {x0; x1; . . .xt; . . .} is a k-cycle of the T-Periodic dynamical system

{ f 0; f 1; . . .; f t; . . .}; then xt ¼ xtmodðkÞ for all t [ Zþ and k is the smallest such integer. The

orbit of f 0ðx0Þ under the T-periodic dynamical system { f 1; f 2; . . .f tþ1; . . .} is

{x1; x2; . . .; xt; . . .}; where xt ¼ xtmodðkÞ for all t [ Zþ If k is the smallest such integer we

are done. Otherwise, there is a smaller integer l such that xt ¼ xtmodðlÞ for all t [ {1; 2; 3; . . .}:

Note that x0 ¼ xk ¼ xkþl ¼ xl: Therefore, xt ¼ xtmodðlÞfor all t [ Zþ: This is a contradiction

to k being the smallest such integer. A

By Lemma 4, k-cycles are mapped to k-cycles. Consequently, the following result is

immediate.
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Corollary 5 Each of the T-cyclic compositions have the same number of periodic points

of each prime period. Furthermore, each of the T-periodic dynamical systems obtained by

permuting the fi have the same number of k-cycles.

If {x0; x1; . . .; xi; . . .} is a k-cycle of the T-periodic dynamical system {f 0; f 1; . . .; f t; . . .}

then x0 is a fixed point of the map FðxÞ ¼ f Tk21ð. . .ðf 1ðf 0ðxÞÞÞ. . .Þ:

Definition 5 If the spectral radius of DxF, the Jacobian matrix of F, is less than one, then

x0 is attracting and we say that the k-cycle is attracting.

Theorem 6 Let {x0; x1; . . .; xi; . . .} be an attracting k-cycle of the T-periodic dynamical

system { f 0; f 1; . . .; f t; . . .}; then there is a neighborhood U of x0 such that if y0 [ U its orbit

limits on the orbit of x0 That is, limn!1yknþi ¼ xi for each i [ Zþ:

Proof Let e . 0: By the continuity of each fi, there exists a d . 0 such that if

ky2 x0k , d

then

k f i21ð. . .ð f 1ð f 0ðyÞÞÞ2 f i21ð. . .ð f 1ð f 0ðx0ÞÞÞk , e

for all i between 0 and Tk. Since x0 is an attracting k-cycle, the spectral radius of DxFðx0Þ ¼

spectral radius of Dx f Tk21ð. . .ðf 1ðf 0ðx0ÞÞÞ. . .Þ , 1: This is equivalent to x0 is an attracting

fixed point of the autonomous differentiable map F. Thus, there is neighborhood U of x0 such

that if y [ U then limt!1F
tðyÞ ¼ x0: Therefore, there exists N such that if n $ N then

kFnðyÞ2 x0k , d: This implies kf i21ð. . .ðf 1ðf 0ðF
nðyÞÞÞÞ2 f i21ð. . .ðf 1ðf 0ðx0ÞÞÞk , e : By the

Reminder Theorem, i ¼ jk þ l where 0 # l , k: Note that f i21ð. . .ðf 1ðf 0ðx0ÞÞÞ ¼ xi ¼

xjkþl ¼ xl and f i21ð. . .ðf 1ðf 0ðF
nðyÞÞÞÞ ¼ ynTkþi ¼ yðnTþjÞkþl: Hence, if n $ N then

kyðnTþjÞkþl 2 xlk , e : Thus, if m $ ðN þ 1ÞT ; then kymkþl 2 xlk , 1 and we are done. A

The following corollary follows directly from the proof of Theorem 6.

Corollary 7 Attracting k-cycles of T-periodic dynamical systems are locally

asymptotically stable.

4. Multiple attractors VIA Cusp bifurcation

In this section, we illustrate that periodic dynamical systems are capable of generating

multiple attractors through a tangent bifurcation in the presence of another attracting cycle.

Thus, periodicity is a mechanism for generating alternative life-history of evolution (multiple

attractors). The following bifurcation result, Lemma 9.1 of [26] (Cusp Bifurcation Theorem),

will be used to illustrate this bifurcation in periodic dynamical systems.

Theorem 8 (Cusp bifurcation) Suppose that a one-dimensional system

x! f ðx;aÞ; x [ R1; a [ R2;

with f smooth, has at a ¼ 0 the fixed point x ¼ 0 for which the cusp bifurcation conditions

hold:

m ¼ f xð0; 0Þ ¼ 1; a ¼
1

2
f xxð0; 0Þ ¼ 0:
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Assume that the following genericity conditions are satisfied:

f xxxð0; 0Þ – 0; ð f a1
f xa2

2 f a2
; f xa1

Þð0; 0Þ – 0

Then there are smooth invertible coordinate and parameter changes transforming the system

into

h! hþ b1 þ b2hþ sh3 þOðh4Þ;

where s ¼ sign f xxxð0; 0Þ ¼ ^1:

The Cusp Bifurcation Theorem implies that if a one-parameter family of maps is

“generically” close to another one-parameter family of maps which supports a pitchfork

bifurcation, then the generic one-parameter family will not support a pitchfork bifurcation.

However, it will support a tangent bifurcation. When the tangent bifurcation occurs, two new

fixed points appear, one stable and the other unstable. The total number of fixed points

increases from 1 to 3 with the two new ones occurring some distance away from the original

stable fixed point.

Theorem 9 Suppose that a one-dimensional system

x! f ðx;a1;a2Þ; x [ R1; ða1;a2Þ [ R2;

with f smooth, has at ða1;a2Þ ¼ ð0; 0Þ the fixed point x ¼ 0 for which the following

conditions hold:

f xð0; 0; 0Þ ¼ 21;

f a1
ð0; 0; 0Þ – 0;

f a2
ð0; 0; 0Þ – 0; 2f xxxð0; 0; 0Þ þ 3ð f xxð0; 0; 0ÞÞ2 – 0;

f xxð0; 0; 0Þ f a1
ð0; 0; 0Þ þ 2f xa1

ð0; 0; 0Þ – 0:

Then f ðf ðx;a1;a2Þ;a1; 0Þ satisfies the hypotheses of the Cusp Bifurcation Theorem.

Proof First, we show that

m ¼
›

›x
f ð f ðx;a1;a2Þ;a1; 0Þjð0;0;0Þ ¼ 1:

›
›x
f ðf ðx;a1;a2Þ;a1; 0Þ ¼ f xðf ðx;a1;a2Þ;a1; 0Þf xðx;a1;a2Þ: Since f xð0; 0; 0Þ ¼ 21; we have

that ›
›x
f ð0; 0; 0Þ ¼ ð21Þ2 ¼ 1:

Next, we show that

a ¼
1

2

›2

›x2
f ð f ðx;a1;a2Þ;a1; 0Þjð0;0;0Þ ¼ 0:

›2

›x2
f ð f ðx;a1;a2Þ;a1; 0Þ ¼ f xxð f ðx;a1;a2Þ;a1; 0Þð f xðx;a1;a2ÞÞ

2

þ f xð f ðx;a1;a2Þ;a1; 0Þf xxðx;a1;a2Þ

and

›2

›x2
f ð f ð0; 0; 0Þ; 0; 0ÞÞ ¼ f xxð f ð0; 0; 0Þ; 0; 0Þð f xð0; 0; 0ÞÞ2

þ f xð f ð0; 0; 0Þ; 0; 0Þf xxð0; 0; 0Þ ¼ ð21Þ2f xxð0; 0; 0Þ

þ ð21Þf xxð0; 0; 0Þ ¼ 0:
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Now, we show that

›3

›x3
f ð f ðx;a1;a2Þ;a1; 0Þjð0;0;0Þ – 0:

›3

›x3
f ð f ðx;a1;a2Þ;a1; 0Þ ¼

›

›x
ð f xxð f ðx;a1;a2Þ;a1; 0Þð f xðx;a1;a2ÞÞ

2

þ f xð f ðx;a1;a2Þ;a1; 0Þð f xxðx;a1;a2ÞÞ

¼ f xxxð f ðx;a1;a2Þ;a1; 0Þð f xðx;a1;a2ÞÞ
3

þ 2f xxð f ðx;a1;a2Þ;a1; 0Þ f xxðx;a1;a2Þ f xðx;a1;a2Þ

þ f xxð f ðx;a1;a2Þ;a1; 0Þ f xðx;a1;a2Þ f xxðx;a1;a2Þ

þ f xð f ðx;a1;a2Þ;a1; 0Þ f xxxðx;a1;a2Þ:

Hence,

›3

›x3
f ð0; 0; 0Þ ¼ ð21Þ3f xxxð0; 0; 0Þ þ ð21Þf xxxð0; 0; 0Þ þ 3ð f xxð0; 0; 0ÞÞ2ð21Þ

¼ 22f xxxð0; 0; 0Þ2 3ð f xxð0; 0; 0ÞÞ2 – 0:

Finally, we show that,

›

›a1

f ð f ðx;a1;a2Þ;a1; 0Þ
›

›xa2

f ð f ðx;a1;a2Þ;a1; 0Þ

�

2
›

›a2

f ð f ðx;a1;a2Þ;a1; 0Þ
›

›xa1

f ð f ðx;a1;a2Þ;a1; 0Þ

�
jð0;0;0Þ – 0:

›

›a1

f ð f ðx;a1;a2Þ;a1; 0Þ ¼ f xð f ðx;a1;a2Þ;a1; 0Þ f a1
ðx;a1;a2Þ þ f a1

ð f ðx;a1;a2Þ;a1; 0Þ;

and
›

›a1

f ð f ð0; 0; 0Þ; 0; 0Þ ¼ f xð f ð0; 0; 0Þ; 0; 0Þ f a1
ð0; 0; 0Þ þ f a1

ð f ð0; 0; 0Þ; 0; 0Þ ¼ 0:

›

›a2

f ð f ðx;a1;a2Þ;a1; 0Þ ¼ f xð f ðx;a1;a2Þ;a1; 0Þ f a2ðx;a1;a2Þ;

and
›

›a2

f ð f ð0; 0; 0Þ; 0; 0Þ ¼ f xð f ð0; 0; 0Þ; 0; 0Þ f a2
ð0; 0; 0Þ ¼ 2f a2

ð f ð0; 0; 0Þ; 0; 0Þ

›2

›x›a1

f ð f ðx;a1;a2Þ;a1; 0Þ ¼
›

›x
ð f xð f ðx;a1;a2Þ;a1; 0Þ f a1

ðx;a1;a2Þ

þ f a1
ð f ðx;a1;a2Þ;a1; 0ÞÞ

¼ f xxð f ðx;a1;a2Þ;a1; 0Þð f xðx;a1;a2Þ f a1
ðx;a1;a2Þ

þ f xð f ðx;a1;a2Þ;a1; 0Þ f xa1
ðx;a1;a2Þ

þ f xa1
ð f ðx;a1;a2Þ;a1; 0Þ f xðx;a1;a2Þ:
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›2

›x›a1

f ð f ð0; 0; 0Þ; 0; 0Þ ¼ 2f xxð f ð0; 0; 0Þ; 0; 0Þf a1
ð0; 0; 0Þ2 2f xa1

ð0; 0; 0Þ:

At ð0; 0; 0Þ; f a1
f xa2

2 f a 3
; f xa1

¼ ð f xxð f ð0; 0; 0Þ; 0; 0Þf a1
ð f ð0; 0; 0Þ; 0; 0Þ

þ 2f xa1
ð f ð0; 0; 0Þ; 0; 0ÞÞ f a2

ð f ð0; 0; 0Þ; 0; 0ÞÞ

– 0:

Thus, all of the conditions for the Cusp Bifurcation are satisfied.

Theorem 9 and the Cusp Bifurcation Theorem establish that f ðf ðx;a1;a2Þ;a1; 0Þ contains

a one parameter family of maps going through f 2ðx; 0; 0Þ that undergoes a pitchfork

bifurcation. This observation leads to the following result.

Theorem 10 Let f(a,x) be a one-parameter family of maps on R which undergoes a period-

doubling bifurcation at (a0,x0). Let {f 0; f 1; . . .; f T21} be a collection of one-parameter family

of maps on R close f. Then each of the T cyclic compostions, {f T21 + . . . +

f 1 + f 0; f 0 + f T21 + . . . + f 2 + f 1; . . .; f T22 + . . . + f 0 + f T21}; are generic perturbations of f T. When

T is even, each of the T cyclic compositions undergo tangent bifurcations (see figure 1).

By Corollary 5, each of the T cyclic compositions have the same number of periodic points.

Hence, the tangent bifurcations of the T cyclic compositions, predicted by Theorem 10, occur

at the same bifurcation parameter. For the T-periodic dynamical system this means that after

the bifurcation, we have two stable coexisting cycles (multiple attractors). In the next section,

we use a specific example to illustrate this bifurcation in a 2-periodic dynamical system.

5. Multiple attractors: 2-Periodic Ricker’s Model

Single species autonomous parametric models such as the classic Ricker and Beverton-Holt

models do not support multiple attractors. However, T-periodic dynamical systems such as

Figure 1. Tangent bifurcation in a perturbation of a pitchfork bifurcation.
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the nonautonomous Ricker model are capable of supporting multiple attractors. To construct

a 2-periodic dynamical system based on the classic Ricker model we let

gðt; xtÞ ¼ exp ðr þ að21Þt 2 xtÞ

where r, a . 0 and r 2 a . 0: Then Model (2) becomes

xtþ1 ¼ xt exp ðr þ að21Þt 2 xtÞ: ð7Þ

Since gðt þ 2; xtÞ ¼ gðt; xtÞ and gðt þ 1; xtÞ – gðt; xtÞ; Equation (7) is a 2-periodic single

species model with corresponding 2-periodic dynamical system {f 0; f 1; . . .; f t; . . .} where

f 0ðxÞ ¼ x exp ðr þ a2 xÞ and f 1ðxÞ ¼ x exp ðr 2 a2 xÞ: The maps f0 and f1 are the Ricker

models, where X01 ¼ r þ a and X11 ¼ r 2 a: When a ¼ 0; f 0 ¼ f 1 and Equation (7) is the

classic Ricker equation (see figure 2(a)). However, when a . 0 then f0 and f1 have unique

positive fixed points that are not equal, and the 2-periodic dynamical system

{ f 0; f 1; . . .; f t; . . .} has no positive fixed points (Lemma 1). In this case, Equation (7) is

Ricker’s model with a cyclically varying intrinsic growth rate. figure 2(b) shows that, as in

the autonomous Ricker equation, increasing values of r force period doubling bifurcations

route to chaos in Equation (7), where a is kept fixed at a ¼ 0:01:

Figure 2(b) starts with a stable 2-cycle rather than a fixed point. At r ¼ 2; the fixed point

of the autonomous Ricker model undergoes a period doubling bifurcation and a stable

2-cycle is born.

Figure 2. Period Doubling Bifurcations. In (a), a ¼ 0:01: On the horizontal axis, 1:5 , r , 3:5 and on the vertical
axis, 0 , y , 15:
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If r . 2; as a is increased from zero the stable 2-cycle generates two coexisting stable

2-cycles. Figure 3 displays the coexisting two stable 2-cycles when r ¼ 2:2 (multiple

attractors). These two 2-cycles are predicted in perturbation theorems of Henson [19], Franke

and Selgrade [10].

When a is fixed at 0.01 while r is increased from 1.8 to 2.3 an interesting bifurcation

occurs not at r ¼ 2 but near r ¼ 2:077: Both f 1 + f 0ðxÞ ¼ x exp ð2r 2 x2 x exp ðr þ a2 xÞÞ

and f 0 + f 1ðxÞ ¼ x exp ð2r 2 x2 x exp ðr 2 a2 xÞÞ undergo a tangent bifurcation as

predicted by Theorem 10 and figure 4. A new stable fixed point and an unstable fixed

point are produced for a total of three fixed points. These give the 2-periodic dynamical

system two new 2-cycles (one stable and one unstable) coexisting with the original stable 2-

cycle. The creation of the unstable 2-cycle through tangent bifurcation has not been predicted

Figure 3. The inner two curves form one 2-cycle and the outer two curves form the other 2-cycle. On the horizontal
axis, 0 , a , 0:2 where r ¼ 2:2:

Figure 4. Two 2-cycle attractors in Equation 2 (Multiple attractors), where on the horizontal axis 1:8 # r # 2:3
and on the vertical axis 0 # y # 4:
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by the results of Henson [19], Franke and Selgrade [10]. It is also interesting to note that f0
and f1 by themselves go through period doubling bifurcations before the 2-periodic

dynamical system goes through the tangent bifurcation.

Lemma 11 With r and a positive f 1 + f 0 and f 0 + f 1 have the same number of positive fixed

points which is either 1,2, or 3.

Proof By Theorem 2, f 1 + f 0 and f 0 + f 1 have the same number of fixed points.

The positive fixed points of f 1 + f 0 and f 0 + f 1 are the points of intersection of the straight

line y ¼ 2r 2 x and the Ricker curves y ¼ xexp ðr þ a2 xÞ and y ¼ x exp ðr 2 a2 xÞ;

respectively. It is easy to see that the number of intersections is either 1,2 or 3 (see figure 5).

6. Conclusion

This paper focuses on the mathematical and biological mechanisms for generating multiple

attractors in periodically forced (nonautonomous) single species population models. Henson

[19], Franke and Selgrade [10] have shown that nonautonomous discrete-time models are

capable of supporting multiple attractors where the corresponding autonomous models

support single attractors. We prove that in periodically forced environments, it is possible to

generate multiple attractors via tangent bifurcation.

In [7,8], Elaydi and Sacker showed that periodically forced discrete-time models support

single attractors via globally stable periodic solutions. We demonstrate that, when conditions

for the Cusp Bifurcation Theorem are satisfied such nonautonomous population models

generate multiple attractors; and the ultimate life-history outcome depends on initial

population densities.

Asymptotic dynamics of systems that support multiple attractors are usually extremely

complicated. The degree of complexity is a function of the structure of the coexisting

Figure 5. Tangent bifurcation in both f 1+f 0 and f 0+f 1:
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attractors and the topology of the basins of attraction. Rigorous studies of the basins of

attraction of multiple attractors and basin boundaries in periodically forced discrete-time

systems is an open question [1,35].
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