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Abstract

This paper concerns the positive case of the difference equation

xn = max
i∈{1,2,...,k}

½
(Ai)n
xn−i

¾
with initial x terms positive, (Ai)n nonnegative, periodic in n and such
that ∀n ∃i such that (Ai)n > 0. We show that if a solution is bounded
then it is eventually periodic. Previous results exist for k = 1 and 2. We
first make a log transformation, replacing division by subtraction, then
define a dynamical system that is equivalent to the difference equation.
This system is shown to be nonexpansive in L∞. A theorem by Weller, [4],
states that bounded solutions that are nonexpansive in a polyhedral norm,
such as L∞, have finite ω-limit sets. We prove that if a bounded solution
has a finite ω-limit set then it must be eventually periodic. Therefore
bounded implies eventually periodic for the log version. Finally, we apply
this result to show that all positive solutions of the reciprocal difference
equation with maximum are eventually periodic.

1 Introduction
This paper concerns the difference equation

xn = max
i∈{1,2,...,k}

½
(Ai)n
xn−i

¾
(1)

with initial x terms positive and (Ai)n nonnegative and periodic in n with the
ith component having period pi. We also assume that for each n there exists
i ∈ {1, 2, ..., k} such that (Ai)n > 0. This insures that each xn is positive. The
case k = 2 has been investigated. In [5] it was proven that Equation (1) with
k = 2 is bounded if and only if neither p1 nor p2 are multiples of three.
We prove that for any size k all solutions that are bounded must be even-

tually periodic. This is accomplished by first transforming the system into a
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topologically conjugate system, which we call the log version. We show that the
log version is nonexpansive in L∞. A solution of Equation (1) must be both
bounded and persistent for the log version to be bounded, but we show that for
solutions of Equation (1) bounded and persistent are equivalent.
A theorem of Weller, [4], states that a bounded orbit of a discrete dynamical

system that is nonexpansive in a polyhedral norm, such as L∞, has a finite
ω-limit set. This implies that a bounded orbit of Equation (1) has a finite ω-
limit set. We show that solutions cannot approach their ω-limit sets arbitrarily
closely, but must eventually jump onto the ω-limit set. Finally, we apply this
result to show that all solutions with positive initial conditions of the reciprocal
difference equation with maximum are eventually periodic.

2 Transformation into a nonexpansive
dynamical system

Equation (1) takes an initial vector of k positive terms, x = (xi)
−1
i=−k, and

generates a sequence starting with x0. Since ln (x) is a diffeomorphism between
(0,∞) and R, we can make a transformation to a dynamically conjugate system,
which we call the log version. Let

yn = ln (xn),
¡
ai
¢
n
=

(
ln
¡
Ai

¢
n

if
¡
Ai

¢
n
> 0

"−∞" if
¡
Ai

¢
n
= 0

(2)

The log version is
yn = max

i∈{1,2,...,k}

©¡
ai
¢
n
− yn−i

ª
(3)

where ∀i ∈ {1, 2, ..., k},
¡
ai
¢
n
is periodic with period pi. Note both yn and¡

ai
¢
n
may range over all real numbers, including zero. Let J be the smallest

number larger than or equal to k that is a common multiple of the periods
{p1, p2, ..., pk}. Use Equation (3) to define the dynamical system

f : RJ → RJ by f
³
(yi)
−1
i=−J

´
= (yi)

J−1
i=0 . (4)

Since the dimension of the domain and range of f is a common multiple of the
periods of all the parameters, the orbits of the autonomous dynamical system f
correspond to the orbits of Equation (3). If J > k, define (yi)

−k−1
i=−J = 0 to obtain

a fixed initial condition for Equation (3). Although the domain of f is J dimen-

sional, only the last k elements affect the output. Note that f
³
(yi)

n+J−1
i=n

´
is

assured to correspond to (yi)
n+2J−1
i=n+J if n mod J = 0.

Solutions of Equation (1) must be both bounded and persistent for the log
version solution to be bounded, but the following lemma shows that bounded
and persistent are equivalent for Equation (1).

Lemma 1 A solution of Equation (1) persists if and only if it is bounded.
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Proof. Suppose a solution of Equation (1) is bounded. Let M be an upper
bound on the x terms. The set of positive, distinct values of

¡
Ai

¢
n
is finite, so

it must have a minimum. Let c be that minimum. Then the smallest possible
x value is c

M , so the solution persists.
Similarly, suppose a solution of Equation (1) persists. Let L > 0 be a lower
bound on the x values, and let d be the maximum of the

¡
Ai

¢
n
values. Then d

L
is an upper bound on the x terms.

2.1 An example

The system

xn = max

½
An

xn−1
,
Bn

xn−2

¾
An = {8, 2, 8, 2, ...} period 2, Bn = {7, 6, 5, 4, 3, 7, 6, 5, 4, 3, ...} period 5

has k = 2, and neither period is a factor of 3, so it is bounded. J = lcm(2, 5) =
10 > k = 2, and the dynamical system f : R10 → R10 is

f
³
(yi)

9
i=0

´
= (yi)

19
i=10 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y10 = max {ln(8)− y9, ln(7)− y8}
y11 = max {ln(2)− y10, ln(6)− y9}
y12 = max {ln(8)− y11, ln(5)− y10}
y13 = max {ln(2)− y12, ln(4)− y11}
y14 = max {ln(8)− y13, ln(3)− y12}
y15 = max {ln(2)− y14, ln(7)− y13}
y16 = max {ln(8)− y15, ln(6)− y14}
y17 = max {ln(2)− y16, ln(5)− y15}
y18 = max {ln(8)− y17, ln(4)− y16}
y19 = max {ln(2)− y18, ln(3)− y17}

The initial condition (0, 0, 0, 0, 0, 0, 0, 0, 2, 1) is eventually periodic of period
2. The first image is

(3ln(2)− 1, ln(6)− 1, 3ln(2)− ln(6) + 1, 2ln(2)− ln(6) + 1, ln(2) + ln(6)− 1,
ln(7)− 2ln(2) + ln(6)− 1, 5ln(2)− ln(7)− ln(6) + 1, ln(5)− ln(7) + 2ln(2)− ln(6) + 1,

ln(2)− ln(5) + ln(7) + ln(6)− 1, ln(3)− ln(5) + ln(7)− 2ln(2) + ln(6)− 1).

This and the second image are not periodic but the third image is periodic of
period 2. We will show that initial conditions becoming periodic is the general
situation for the reciprocal-max difference equation.

2.2 The dynamical system is nonexpansive

We show that f is nonexpansive in L∞. This means that for y, z ∈ RJ , kf(z)−
f(y)k∞ ≤ kz − yk∞.
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Theorem 2 System (4) is nonexpansive in L∞.

Proof. Consider two initial vectors y, and z, which generate solutions by Equa-
tion (3). Let n ∈ N be fixed. Let c = max {|yi − zi| | i ∈ {n− k, n− k + 1, ..., n− 1}}.
We prove that |yn− zn| ≤ c, which by induction proves that System (4) is non-
expansive.
Without loss of generality assume that yn > zn. Let j ∈ {1, 2, ..., k} such that
yn =

¡
aj
¢
n
− yn−j . Then zn ≥

¡
aj
¢
n
− zn−j . Therefore

0 ≤ yn−zn =
¡
aj
¢
n
−yn−j−zn ≤

¡
aj
¢
n
−yn−j−

³¡
aj
¢
n
−zn−j

´
= zn−j−yn−j ≤

c.

3 Bounded implies eventually periodic.
System (4) is a nonexpansive dynamical system in a polyhedral norm, so if an
initial vector has a bounded solution then it’s ω-limit set is finite, as was proven
by Weller [4].
The next lemma shows that if y, an initial vector, has a finite ω-limit set

under f then this set consists of a single periodic orbit. It also shows that if P
is the period of this orbit then limn→∞ fnP (y) exists.

Lemma 3 Let f : RJ → RJ and y ∈ RJ . If ω(y) has cardinality P ∈ N, then
ω(y) consists of a single periodic orbit of period P and limn→∞ fnP (y) exists.

Proof. Let f : RJ → RJ with metric d and let y ∈ RJ with ω(y) having
cardinality P ∈ N. Let ε > 0 be less than one-half of the minimum distance
between the points in ω(y). By the continuity of f there is a positive δ smaller
than ε such that if the distance from x ∈ RJ to some point z ∈ ω(y) is less
than δ, then d(f(x), f(z)) < ε. The orbit of y has a subsequence (fnk(y))
which converges to z. Hence there exits K ∈ N such that k ≥ K implies that
d(fnk(y), z) < δ. Thus d(fnk+1(y), f(z)) < ε. If in fact d(fnk+1(y), f(z)) < δ,
then d(fnk+2(y), f2(z)) < ε since the orbit of z is a subset of ω(y). Iteration
of this shows that either there is a k∗ such that d(fnk∗+s(y), fs(z)) < δ for all
s ∈ N or for each k there is an sk with δ ≤ d(fnk+sk(y), fsk(z)) < ε. In the later
case the sequence (fnk+sk(y)) is always more than δ from any point in ω(y).
This is impossible since this sequence must have a convergent subsequence which
would be an element of ω(y). So there is a k∗ such that d(fnk∗+s(y), fs(z)) < δ
for all s ∈ N. The orbit of fnk∗ (y) must get within δ of every point in ω(y), but
it also stays within δ of the orbit of z which is a subset of ω(y). Hence the orbit
of z must equal ω(y). Hence z must be periodic and its orbit is ω(y).
To finish the proof note that since d(fnk∗+sP (y), fsP (z)) < δ for all s ∈ N

and fsP (z) = z, the bounded sequence (fnk∗+sP (y)) has subsequences that can
only converge to z. Thus this sequence must converge to z and limn→∞ fnP (y)
is one of the points in the orbit of z.
The following theorem shows that if some initial condition for f has a finite

ω-limit set then its orbit must be eventually periodic.
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Theorem 4 Let (yi)−1i=−J be an initial condition that has a bounded orbit under
System (4). Then the sequence (yi)∞i=0 is eventually periodic.

Proof. Let y = (yi)
−1
i=−J be an initial condition for System (4) such that the

sequence (yi)∞i=0 determined by the underlying Equation (3) is bounded. Let
P be the cardinality of ω(y), the ω-limit set of y. Weller [4] showed that P
is finite since System (4) is a nonexpansive dynamical system in a polyhedral
norm. Let ẏ = (ẏi)

J−1
i=0 = limn→∞ fnP (y). Lemma 3 shows that ẏ exists and is

a periodic point of period P in ω(y). Since ẏ is periodic of period P , its orbit
can be viewed as generating the periodic sequence (ẏi)

PJ−1
i=0 . Now define the

periodic sequence of values (dj)
JP−1
j=0 by

dj = min
³
{1} ∪

n
ẏj −

¡
ai
¢
j
+ ẏj−i | ẏj >

¡
ai
¢
j
− ẏj−i, i ∈ {1, 2, ..., k}

o´
.

Since ẏj = max
i∈{1,2,...,k}

¡
ai
¢
j
+ ẏj−i, dj is the smallest positive difference between

ẏj and the terms in its log-max equation, or 1. The minimum with 1 is in
case the set of positive differences is empty. Thus dj > 0 for all j ∈ {0, 1, · ·
·, JP − 1}. Let = 1

3 min {dj | j ∈ {0, 1, · · ·, JP − 1}}. Note > 0. Let U =©
z ∈ RJ | kz − ẏk∞ <

ª
. Since limn→∞ fnP (y) = ẏ, there is an n∗ ∈ N such

that fn
∗P (y) ∈ U . Let fn

∗P (y) = z = (zi)
J−1
i=0 , then zi = yi−J+n∗PJ for all

i ≥ 0. Theorem 2 shows that |zi − ẏi| < for all i ≥ 0. For i ∈ {0, 1, · · ·, J − 1}
let ∆zi = |ẏi − zi| and let D = {0} ∪ {∆zi | i ∈ {0, 1, · · ·, J − 1}}.

Claim 5 Let j ∈ {1, 2, · · ·, k}. If zn =
¡
aj
¢
n
− zn−j then ẏn =

¡
aj
¢
n
− ẏn−j.

Proof of Claim. This claim shows that the term selected in the log-max
equation of zn also works for ẏn. Let j ∈ {1, 2, · · ·, k} s.t. zn =

¡
aj
¢
n
− zn−j .

Suppose ẏn 6=
¡
aj
¢
n
− ẏn−j . Then

0 < ≤ dn
3
≤ ẏn − (aj)n + ẏn−j

3
,

3 ≤ ẏn −
¡
aj
¢
n
+ ẏn−j ,

ẏn−j ≥ 3 +
¡
aj
¢
n
− ẏn,

ẏn−j − zn−j ≥ 3 +
¡
aj
¢
n
− ẏn − (

¡
aj
¢
n
− zn) and

ẏn−j − zn−j ≥ 3 + (zn − ẏn)

which is impossible since ẏn−j − zn−j < and zn − ẏn > − . Therefore it
must be true that ẏn =

¡
aj
¢
n
− ẏn−j .

This claim shows that there is a j ∈ {1, 2, · · ·, k} such that |zJ − ẏJ | =¯̄¡
aj
¢
J
− zJ−j − (

¡
aj
¢
J
− ẏJ−j)

¯̄
= |zJ−j − ẏJ−j | = ∆zJ−j ∈ D. By repeating

this argument |zi−ẏi| ∈ D ∀ i ≥ J.Now let δ = min {∆zi | ∆zi > 0, i ∈ {0, 1, · · ·, J − 1}} .
Let m ∈ N s.t. kfmP (z)− ẏk∞ < δ. Then
max {|zJmP+i − ẏi| | i ∈ {0, 1, · · ·, J − 1}} < δ, and
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max {|zJmP+i − ẏi| | i ∈ {0, 1, · · ·, J − 1}} ∈ D, so
max {|zJmP+i − ẏi| | i ∈ {0, 1, · · ·, J − 1}} = 0, and
ẏ = fmP (z) = f (n∗+m)P (y), and therefore f (n∗+m+1)P (y) = f (n∗+m)P (y), so
(yi)
∞
i=0 is an eventually periodic sequence with period JP .

4 The positive case of the reciprocal difference
equation with maximum is eventually
periodic.

Theorem (4) showed that bounded implies eventually periodic for Equation (1).
An important corollary to this is that the positive case of the reciprocal differ-
ence equation with maximum is eventually periodic. This difference equation
is

xn = max
i∈{1,2,...,k}

½
Bi

xn−i

¾
, Bi nonnegative, x positive. (5)

Voulov has shown in [6] that Equation (5) is bounded, and since Equation (5)
is just a special case of Equation (1), its solutions are eventually periodic.

Corollary 6 All solutions of Equation (5) are eventually periodic.

Proof. Let k ∈ N, and Bi ≥ 0 for i ∈ {1, 2, · · ·, k} be fixed. Use these to define
Equation (5). Define (Ai)n by

(Ai)n = Bi ∀ n ∈ N, i ∈ {1, 2, · · ·, k}. (6)

Then these (Ai)n values define an equivalent difference Equation (1). Since
Equation (5) is bounded, the equivalent difference Equation (1) is also bounded.
By Theorem (4) the solutions of Equation (1) are eventually periodic, so the
solutions of Equation (5) are also eventually periodic.
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