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Periodic environments may either enhance or suppress a population via resonant or attenuant cycles.
We derive signature functions for predicting the responses of two competing populations to 2-periodic
oscillations in six model parameters. Two of these parameters provide a non-trivial equilibrium and two
provide the carrying capacities of each species in the absence of the other, but the remaining two are
arbitrary and could be intrinsic growth rates. Each signature function is the sign of a weighted sum of the
relative strengths of the oscillations of the perturbed parameters. Periodic environments are favourable for
populations when the signature function is positive and are deleterious if the signature function is negative.
We compute the signature functions of four classical, discrete-time two-species populations and determine
regions in parameter space which are either favourable or detrimental to the populations. The six-parameter
models include the Logistic, Ricker, Beverton–Holt, and Hassell models.

Keywords: attenuance; competition; periodic forcing; resonance; signature function

AMS Subject Classifications: Primary: 37G15, 37G35, 39A28; Secondary: 39A60, 92B05

1. Introduction

Populations live naturally in changing environments in which variations caused by food
availability, migrations, tidal patterns, and mating habits may be assumed to be cyclic or
periodic. As a result, fluctuating environments are of particular interest to population biologists
[2,3,6,10,15,16,22]. For example, in the 1980 controlled laboratory experiments of flour beetles
(Tribolium), Jillson observed that a periodic food supply generated cyclic oscillations within the
beetle population. The alternating habitat in fact supported a larger beetle population, more than
twice that of a constant environment even though the average flour volume remained the same
[17,18]. It has since been demonstrated that under certain conditions, periodic environments may
be advantageous to a population and yet deleterious under others [5,9,11]. In other words, the aver-
age of the resulting population oscillations in a periodic environment may either be greater or be
less than, respectively, the average of the carrying capacities in an otherwise constant environment.
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In constant environments, many discrete-time two-species models are extensions of
single-species models that contain at least two parameters, usually the carrying capacity and
a demographic characteristic [3–5]. Examples of such single-species models include the Logistic,
Ricker, Beverton–Holt, and Hassell models. In recent papers, Franke and Yakubu [11,12] have
investigated the responses of classical, single-species, discrete-time models to periodic oscil-
lations in two and three parameters. In this paper, we extend their investigations to study the
responses of a two-dimensional system to periodic fluctuations in six model parameters and com-
pare them against those elicited by a constant environment. More specifically, we analyse the
effects that a 2-periodic forcing of six parameters has on a discretely reproducing two-species
population model of a competitive type and investigate a 2-cycle population that bifurcates from
the perturbed interior fixed point, which we refer to as the carrying capacity fixed point. We take
a special interest in the case where the two species are very similar as might happen when a
mutation occurs in a species.

Section 2 introduces a general framework for studying the impact of environmental fluctuations
on a discrete-time two-species population model with six oscillating parameters. Here, we provide
conditions sufficient for our unforced model to have a stable fixed point. In Sections 3 and 4, we
impose 2-periodic forcing on the model and prove that small 2-periodic perturbations support
2-cycle populations. We study the 2-cycle that must, for small forcing, be close to the carrying
capacity fixed point defined in Section 2.

In Section 5, we derive a signature function, Rd , for determining whether the average total
biomass is suppressed via attenuant stable 2-cycles or augmented via resonant stable 2-cycles.
As in [11,12], Rd is the sign of a weighted sum of the relative strengths of the oscillations of
the carrying capacities and the remaining parameters. When these oscillations are small and the
environment is 2-periodic, we prove that the average total biomass of the two-species system
diminishes if Rd is negative and is enhanced when Rd is positive. Also in Section 5, we derive
similar signature functions, Sd and Td , for each individual species and determine the response that
species makes to the periodic environment. We then obtain conditions on the relative strengths of
the oscillations sufficient for obtaining positive or negative signature functions.

Furthermore, we establish that the relative strengths of the oscillations of this carrying capacity
fixed point and the remaining four model parameters are critical factors in predicting how a two-
species population responds to a periodic environment. We observe that changes in the relative
strengths of the parameter fluctuations are capable of shifting population dynamics from resonant
to attenuant 2-cycles or vice versa. It is known that this dramatic shift is not possible in single-
species models with a single oscillating parameter [11,14,15]. We illustrate these concepts in
Section 6 by computing the signature functions of four discrete-time, competitive, two-species
models and provide parameter regimes for the occurrence of stable attenuant and resonant 2-cycles
that bifurcate from the carrying capacity fixed point. Finally, the implications of our results are
discussed in Section 7, and the derivations of the signature functions are included in Appendix 1.

2. Two-species population models of six parameters

Most single-species ecological models contain two or more model parameters and so, by extension,
many two-species ecological models contain at least four parameters [5,23]. To study the combined
effects of 2-periodic forcing on models with six parameters, we consider two-species population
models of the general form

x(t + 1) = x(t)g1(B, C, S, T , L, M, x(t), y(t)),

y(t + 1) = y(t)g2(B, C, S, T , L, M, x(t), y(t)),
(1)
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784 M.A. Morena and J.E. Franke

where x(t) and y(t) are the populations of each species at generation t. The per capita growth rates

g1, g2 ∈ C3(R̊6
+ × R

2
+, R+),

where R+ = [0, ∞) and R̊+ = (0, ∞). The parameters L and M play the role of carrying capacities
for the system in that we assume that (L, M) is an interior fixed point of Model (1); that is,
g1(B, C, S, T , L, M, L, M) = g2(B, C, S, T , L, M, L, M) = 1, while S and T represent the boundary
equilibrium points in that they are the carrying capacities of each species in the absence of the
other; that is, g1(B, C, S, T , L, M, S, 0) = g2(B, C, S, T , L, M, 0, T) = 1. Finally, B and C are left
as arbitrary model parameters, which are intrinsic growth rates in several of the example models
given in Section 6. When the rate of change of the growth rate of one species with respect to
that of the other species is negative, Model (1) is competitive [3,4,6]. We assume that ∂g1/∂y and
∂g2/∂x are both negative at (B, C, S, T , L, M, L, M) and thus say that our system is competitive at
(x, y) = (L, M), the carrying capacity of the system.

To simplify the notation, we let P(x, y) = (B, C, S, T , L, M, x, y) for a pre-selected set of positive
parameters (B, C, S, T , L, M). We can then define the function

G : R
2
+ −→ R

2
+

by

G(P(x, y)) = (g1(P(x, y)), g2(P(x, y))).

Many of our results involve evaluating the Jacobian determinant of G at some population (x, y).
Our notation is JG(P(x, y)), where

JG(P(x, y)) = det(DG(x, y)) =
(

∂g1

∂x

∂g2

∂y
− ∂g1

∂y

∂g2

∂x

)∣∣∣∣
P(x,y)

.

We frequently refer to the total biomass and the carrying capacity fixed point throughout our
discussion. These are defined below.

Definition 2.1 The total biomass of the system defined by Model (1) refers to the sum of the x
and y populations at the same generation: x(t) + y(t).

The interior fixed point, (L, M), of Model (1) is often globally attracting in our examples [23].
This fixed point thus captures the idea of carrying capacity and we make the following definition.

Definition 2.2 The carrying capacity fixed point is the fixed point population, (L, M), of
Model (1).

For each set of six positive constants (B, C, S, T , L, M), we define

f1B,C,S,T ,L,M , f2B,C,S,T ,L,M : R
2
+ −→ R+

by

f1B,C,S,T ,L,M (x, y) = xg1(P(x, y))

and

f2B,C,S,T ,L,M (x, y) = yg2(P(x, y)).

We use these as the component functions for F : R
2+ → R

2+, where

F(P(x, y)) = (f1B,C,S,T ,L,M (x, y), f2B,C,S,T ,L,M (x, y))

= (xg1(P(x, y)), yg2(P(x, y))). (2)

The set of iterates of F is equivalent to the density sequences generated by Model (1).
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Table 1. Examples of multiparameter population models.

Model number Model, F(P(x, y)) = References

I

⎛
⎜⎜⎝

x

(
1 + B

(
1 − xM − yL + yS

MS

))

y

(
1 + C

(
1 − −xM + yL + xT

LT

))
⎞
⎟⎟⎠ Logistic model [20]

II

⎛
⎜⎜⎝

x exp

(
B

(
1 − xM − yL + yS

MS

))

y exp

(
C

(
1 − −xM + yL + xT

LT

))
⎞
⎟⎟⎠ Ricker [21]

III

⎛
⎜⎜⎝

xB
MS

(B − 1)MS + xM − yL + yS

yC
LT

(C − 1)LT − xM + yL + xT

⎞
⎟⎟⎠ Beverton–Holt (B, C > 1) [1]

IV

⎛
⎜⎜⎝

x
(M(1 + S))B

(M + xM − yL + yS)B

y
(L(1 + T))C

(L − xM + yL + xT)C

⎞
⎟⎟⎠ Hassell [13]

One way to generate models of the type we are studying is to start with a one-species model:

f (α, k, x) = xg(α, k, x),

where α is the intrinsic growth rate and k is the carrying capacity. Since k is the carrying capacity,

g(α, k, k) = 1.

Taking as growth rates

g1(B, C, S, T , L, M, x, y) = g

(
B, S,

xM − yL + yS

M

)
,

g2(B, C, S, T , L, M, x, y) = g

(
C, T ,

−xM + yL + xT

L

) (3)

induces a two-species system with six parameters that admits the interior point (L, M) as a carrying
capacity fixed point. In this model, (S, 0) and (0, T) are also equilibria where it is assumed that
S > L and T > M in keeping with a competitive model. This method is used to generate Table 1,
which lists four specific classical examples of Model (1) from the literature.

The following result provides necessary and sufficient stability conditions whereby the carrying
capacity fixed point is locally attracting for Model (1).

Theorem 2.3 The carrying capacity fixed point is a hyperbolic attracting fixed point of Model (1)
if and only if

−4 < L
∂g1

∂x
+ M

∂g2

∂y
< 0

and

JG(P(L, M)) > max

{ −2

LM

(
L

∂g1

∂x
+ M

∂g2

∂y
+ 2

)
, 0

}
,

where all the partial derivatives are evaluated at P(L, M).
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786 M.A. Morena and J.E. Franke

Proof The derivative matrix of F(P(x, y)) evaluated at the carrying capacity fixed point,
P(x, y) = P(L, M), is given by

DF(P(L, M)) =

⎛
⎜⎜⎝

1 + L
∂g1

∂x
L

∂g1

∂y

M
∂g2

∂x
1 + M

∂g2

∂y

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
P(L,M)

(4)

and its two eigenvalues are found to be

λ1,2 = 1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ , (5)

where the partial derivatives are all evaluated at the carrying capacity fixed point. Because
Model (1) is competitive at P(L, M), ∂g1/∂y < 0 and ∂g2/∂x < 0, and there are no complex
eigenvalues.

If the carrying capacity fixed point is both hyperbolic and locally attracting, then the eigenvalues
of Equation (4) lie entirely inside the unit circle, in which case

−1 <
1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ < 1

or, equivalently,

−4 < L
∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
< 0. (6)

From this, we immediately obtain −4 < L(∂g1/∂x) + M(∂g2/∂y) < 0, which is the first objective
of the theorem. For the second objective, using the two inequalities in Equation (6) with −4 yields
the two inequalities

−L
∂g1

∂x
− M

∂g2

∂y
− 4 <

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
< L

∂g1

∂x
+ M

∂g2

∂y
+ 4.

Therefore, √(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
<

∣∣∣∣L ∂g1

∂x
+ M

∂g2

∂y
+ 4

∣∣∣∣ .

After squaring both sides and subtracting, we have

−2

LM

(
L

∂g1

∂x
+ M

∂g2

∂y
+ 2

)
<

∂g1

∂x

∂g2

∂y
− ∂g1

∂y

∂g2

∂x

which is JG(P(L, M)). On the other hand, Equation (6) also gives√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
< −L

∂g1

∂x
− M

∂g2

∂y
,

from which we obtain JG(P(L, M)) > 0 by squaring and subtracting.
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For the reverse direction, first use JG(P(L, M)) > 0 to obtain

(
L

∂g1

∂x
+ M

∂g2

∂y

)2

=
(

L
∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂x

∂g2

∂y

>

(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

and thus ∣∣∣∣L ∂g1

∂x
+ M

∂g2

∂y

∣∣∣∣ >

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
.

However, since L(∂g1/∂x) + M(∂g2/∂y) < 0, |L(∂g1/∂x) + M(∂g2/∂y)| = −(L(∂g1/∂x) +
M(∂g2/∂y)) and so

1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ < 1. (7)

Similarly, use JG(P(L, M)) > (−2/LM)(L(∂g1/∂x) + M(∂g2/∂y) + 2) to obtain

(
L

∂g1

∂x
+ M

∂g2

∂y
+ 4

)2

=
(

L
∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂x

∂g2

∂y
+ 8

(
L

∂g1

∂x
+ M

∂g2

∂y

)
+ 16

>

(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

and therefore

∣∣∣∣L ∂g1

∂x
+ M

∂g2

∂y
+ 4

∣∣∣∣ >

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
.

This time use L(∂g1/∂x) + M(∂g2/∂y) > −4 to obtain |L(∂g1/∂x) + M(∂g2/∂y) + 4| =
L(∂g1/∂x) + M(∂g2/∂y) + 4, and we have

1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ > −1. (8)

From Equations (7) and (8), we can see that the eigenvalues, λ1,2, are inside the unit circle and
(L, M) is indeed locally attracting. �

A direct application of the inequalities in Theorem 2.3 to the four models in Table 1 yields the
necessary and sufficient conditions for (L, M) to be a hyperbolic attracting fixed point presented
in Table 2.

3. 2-Periodic forcing

We introduce 2-periodic forcing into our model by having each parameter oscillate about its
original value by fractional amounts. Let a, b, c, d, e, and f be the maximal fractional oscillations
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788 M.A. Morena and J.E. Franke

Table 2. Stability conditions for the six-parameter two-species models given in Table 1.

Parameters giving stable carrying capacity, note B, C, S, T , L, M > 0 with
Model number B, C > 1 in Model III

I 4ST > BLT + CMS, LT + MS > ST , (4 − BC)ST > (2 − C)BLT + (2 − B)CMS
II 4ST > BLT + CMS, LT + MS > ST , (4 − BC)ST > (2 − C)BLT + (2 − B)CMS
III 4BCST > CLT + BMS, LT + MS > ST , (4BC − 1)ST > (2C − 1)LT + (2B − 1)MS
IV 4(1 + S)(1 + T) > BL(1 + T) + CM(1 + S), LT + MS > ST , (4 − BC)ST + 4(1 + S + T) >

(2 − C)BLT + (2 − B)CMS + 2(BL + CM)

of L, M, S, T , B, and C, respectively. Model (1) becomes

x(t + 1) = x(t)g1(B(1 + e(−1)t), C(1 + f (−1)t), S(1 + c(−1)t), T(1 + d(−1)t),

L(1 + a(−1)t), M(1 + b(−1)t), x(t), y(t)),

y(t + 1) = y(t)g2(B(1 + e(−1)t), C(1 + f (−1)t), S(1 + c(−1)t), T(1 + d(−1)t),

L(1 + a(−1)t), M(1 + b(−1)t), x(t), y(t)).

(9)

To study the changing behaviour of our system as the fractional oscillations of B, C, S, T , L,
and M vary from zero to their maximal amounts, we introduce three bifurcation parameters:
α, β, γ ∈ (−1, 1). We are particularly interested in the case where the two species differ only
slightly, as might happen after a mutation has occurred within one species. It is thus reasonable
to assume that each term in the pairs (L, M), (S, T), and (B, C) behaves similarly to fluctuations
in the environment, and the parameters α, β, and γ are taken to be the fraction of the maximal
oscillations of these pairs, respectively. This extends Equation (9) to our general, periodically
forced model for this paper, Model (10),

x(t + 1) = x(t)g1(B, C, S, T , L, M, x(t), y(t)),

y(t + 1) = y(t)g2(B, C, S, T , L, M, x(t), y(t)),
(10)

where B = B(1 + eγ (−1)t), C = C(1 + f γ (−1)t), S = S(1 + cβ(−1)t), T = T(1 + dβ(−1)t),
L = L(1 + aα(−1)t), and M = M(1 + bα(−1)t).

In Section 6, we study the four 2-periodically forced versions of the models listed in Table 1
to illustrate specific examples of Model (10).

When(
x1

y1

)
=

(
x0g1(B(1 + eγ ), C(1 + f γ ), S(1 + cβ), T(1 + dβ), L(1 + aα), M(1 + bα), x0, y0)

y0g2(B(1 + eγ ), C(1 + f γ ), S(1 + cβ), T(1 + dβ), L(1 + aα), M(1 + bα), x0, y0)

)

and(
x0

y0

)
=

(
x1g1(B(1 − eγ ), C(1 − f γ ), S(1 − cβ), T(1 − dβ), L(1 − aα), M(1 − bα), x1, y1)

y1g2
(
B(1 − eγ ), C(1 − f γ ), S(1 − cβ), T(1 − dβ), L(1 − aα), M(1 − bα), x1, y1)

)
,

then {(x0, y0), (x1, y1)} is a 2-cycle population for Model (10). Depending on the choice of param-
eters, 2-periodic dynamical systems may support attracting 2-cycles [7]. In the next section, we
obtain conditions for the asymptotic stability of the 2-cycle of Model (10) under the assumption
that the 2-cycle must, for small forcing, be close to the carrying capacity fixed point.

Similar to Franke and Yakubu [7,8,11,12], if the carrying capacity fixed point, (L, M), is the
source of a 2-cycle, we use the following definition to compare the average of the 2-cycle with
the unforced total biomass.
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Definition 3.1 A 2-cycle, {(x0, y0), (x1, y1)}, of Model (10) is attenuant (resonant) if its average
total biomass,

x0 + y0 + x1 + y1

2
,

is less (greater) than the unforced total biomass M + L of the system [5,11].

A two-species population cycle of Model (10) is thus attenuant (resonant) if its average total
biomass decreases (increases) in the advent of periodic forcing. If {(x0, y0), (x1, y1)} is a 2-cycle for
Model (10), then {x0, x1} and {y0, y1} are each 2-cycles for the individual x-species and y-species.
Analogous definitions of attenuance and resonance for a single-species 2-cycle of Model (10) are
provided below.

Definition 3.2 A 2-cycle, {x0, x1} or {y0, y1}, of a single species of Model (10) is attenuant
(resonant) if its average value is less (greater) than L or M, respectively, the corresponding
component of the carrying capacity of the system [5,11].

Attenuant and resonant cycles thus refer to a decrease and an increase, respectively, in average
total population sizes.

4. 2-cycle population oscillations from unforced carrying capacity

Henson demonstrated that small perturbations of the food supply of a single species can generate
2-periodic population cycles of period two [14]. Later, Franke and Yakubu [11] showed that
small, 2-periodic perturbations of the carrying capacity and the demographic characteristic of
discrete-time, single-species population models produce 2-cycle populations. In this section, we
demonstrate that small, 2-periodic fluctuations of the six parameters in Model (1) can produce
2-cycle populations, {(x0, y0), (x1, y1)}, with x0 and x1 near L and y0 and y1 near M. That is,
(x0 + x1 + y0 + y1)/2 is near L + M. In a constant environment, this 2-cycle population reduces
to the carrying capacity fixed point.

We simplify the notation again and let

P(α, x, y) = (α, β, γ , B, C, S, T , L, M, x, y),

P(0, x, y) = (0, 0, 0, B, C, S, T , L, M, x, y),

in which case we can write P(0, x, y) = P(x, y). For a given set of perturbation values, α =
(α, β, γ ), maximal fractional oscillations, (a, b, c, d, e, f ), and parameters, (B, C, S, T , L, M),
we define

F−, F+ : R
2
+ −→ R

2
+

by

F−(P(α, x, y))

=
(

f1B(1−eγ ),C(1−f γ ),S(1−cβ),T(1−dβ),L(1−aα),M(1−bα)
(x, y)

f2B(1−eγ ),C(1−f γ ),S(1−cβ),T(1−dβ),L(1−aα),M(1−bα)
(x, y)

)

=
(

xg1(B(1 − eγ ), C(1 − f γ ), S(1 − cβ), T(1 − dβ), L(1 − aα), M(1 − bα), x, y)
yg2(B(1 − eγ ), C(1 − f γ ), S(1 − cβ), T(1 − dβ), L(1 − aα), M(1 − bα), x, y)

)
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790 M.A. Morena and J.E. Franke

and

F+(P(α, x, y))

=
(

f1B(1+eγ ),C(1+f γ ),S(1+cβ),T(1+dβ),L(1aα),M(1+bα)
(x, y)

f2B(1+eγ ),C(1+f γ ),S(1+cβ),T(1+dβ),L(1aα),M(1+bα)
(x, y)

)

=
(

xg1(B(1 + eγ ), C(1 + f γ ), S(1 + cβ), T(1 + dβ), L(1 + aα), M(1 + bα), x, y)
yg2(B(1 + eγ ), C(1 + f γ ), S(1 + cβ), T(1 + dβ), L(1 + aα), M(1 + bα), x, y)

)
.

The orbit of an initial population, (x0, y0), governed by the 2-periodic model (10) is thus given by

(x0, y0) −→ F+(P(α, x0, y0)) = (x1, y1) −→ F−(P(α, x1, y1))

= (x2, y2) −→ F+(P(α, x2, y2)) = (x3, y3) −→ · · · .

In the absence of periodic forcing, F−(P(0, x, y)) = F+(P(0, x, y)) = F(P(x, y)), which is
Equation (2). As a result, Model (10) reverts to the unperturbed system governed by Model (1)
and the carrying capacity fixed point of Model (1) remains a fixed point of Model (10), provided
that α, β, and γ are all zero.

The following theorem provides conditions sufficient for Model (10) to produce a 2-cycle that
is perturbed from the carrying capacity fixed point.

Theorem 4.1 Suppose

JG(P(0, L, M)) �= 0

and

JG(P(0, L, M)) �= −2

LM

(
M

∂g1

∂x
+ L

∂g2

∂y
+ 2

)
,

where all the partial derivatives are evaluated at P(L, M). Then, for all sufficiently small |α|, |β|,
and |γ |, Model (10) has a 2-cycle population,

{(x0 = x0(α, β, γ ), y0 = y0(α, β, γ )), (x1 = x1(α, β, γ ), y1 = y1(α, β, γ ))}.
Furthermore,

lim
(α,β,γ )→(0,0,0)

x0(α, β, γ ) = lim
(α,β,γ )→(0,0,0)

x1(α, β, γ ) = L,

lim
(α,β,γ )→(0,0,0)

y0(α, β, γ ) = lim
(α,β,γ )→(0,0,0)

y1(α, β, γ ) = M,

and x0(α, β, γ ), x1(α, β, γ ), y0(α, β, γ ), and y1(α, β, γ ) are C3 with respect to α, β, and γ . If the
carrying capacity fixed point, (L, M), is asymptotically stable, then the 2-cycle is asymptotically
stable.

Proof Let

F(P(α, x, y)) = (F− ◦ F+)(P(α, x, y)).

To prove this result, we must determine the fixed points of the composition map

F(P(α, x, y)) =

⎛
⎜⎜⎝

xg1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y)g1(B̃, C̃, S̃, T̃ , L̃, M̃, xg1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y),
yg2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y))

yg2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y)g2(B̃, C̃, S̃, T̃ , L̃, M̃, xg1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y),
yg2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y))

⎞
⎟⎟⎠ ,

where B̂ = B(1 + eγ ), Ĉ = C(1 + f γ ), Ŝ = S(1 + cβ), T̂ = T(1 + dβ), L̂ = L(1 + aα), M̂ =
M(1 + bα), B̃ = B(1 − eγ ), C̃ = C(1 − f γ ), S̃ = S(1 − cβ), T̃ = T(1 − cβ), L̃ = L(1 − aα),
and M̃ = M(1 − bα).
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Note that F(P(0, L, M)) = (L, M). We must establish that when P(α, x, y) = P(0, L, M), the
eigenvalues of [DF(P(α, x, y)) − I2] are non-zero where I2 is the 2 × 2 identity matrix. Since
Model (10) reduces to the unperturbed system of Model (1),

DF(P(0, L, M)) = (DF(P(L, M)))2

by the chain rule. In the proof of Theorem 2.3, the two eigenvalues of DF(P(L, M)) are found
to be

λ1,2 = 1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ ,

where all the partial derivatives are evaluated at the carrying capacity fixed point. Because
Model (1) is competitive, the product (∂g1/∂y)(∂g2/∂x) is positive and the system does not
admit complex eigenvalues.

If JG(P(0, L, M)) is non-zero, then

2LM
∂g1

∂x

∂g2

∂y
�= −2LM

∂g1

∂x

∂g2

∂y
+ 4LM

∂g1

∂y

∂g2

∂x

and hence (
L

∂g1

∂x
+ M

∂g2

∂y

)2

�=
(

L
∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
.

From here, we obtain

1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ �= 1.

On the other hand, if JG(P(0, L, M)) �= (−2/LM)(L(∂g1/∂x) + M(∂g2/∂y) + 2), where all the
partial derivatives are evaluated at P(L, M), then

LM
∂g1

∂x

∂g2

∂y
+ 2L

∂g1

∂x
+ 2M

∂g2

∂y
+ 4 �= LM

∂g1

∂y

∂g2

∂x
.

This leads to (
L

∂g1

∂x
+ M

∂g2

∂y
+ 4

)2

�=
(

L
∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x
> 0,

and it is straightforward to check

1

2

⎡
⎣2 + L

∂g1

∂x
+ M

∂g2

∂y
±

√(
L

∂g1

∂x
− M

∂g2

∂y

)2

+ 4LM
∂g1

∂y

∂g2

∂x

⎤
⎦ �= −1.

Therefore, all of the eigenvalues of DF(P(L, M)) lie off the unit circle and the theorem follows
from a direct application of the implicit function theorem [19]. �

Since the carrying capacity fixed point is a hyperbolic fixed point of F(P(x, y)) when the
eigenvalues of its derivative matrix lie off the unit circle, the following consequence of Theorem 4.1
is immediate.
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792 M.A. Morena and J.E. Franke

Corollary 4.2 If the carrying capacity fixed point of Model (1) is hyperbolic, then for all
sufficiently small |α|, |β|, and |γ |, Model (10) has a 2-cycle population,

{(x0 = x0(α, β, γ ), y0 = y0(α, β, γ )), (x1 = x1(α, β, γ ), y1 = y1(α, β, γ ))}.
where

lim
(α,β,γ )→(0,0,0)

x0(α, β, γ ) = lim
(α,β,γ )→(0,0,0)

x1(α, β, γ ) = L,

lim
(α,β,γ )→(0,0,0)

y0(α, β, γ ) = lim
(α,β,γ )→(0,0,0)

y1(α, β, γ ) = M,

and x0(α, β, γ ), x1(α, β, γ ), y0(α, β, γ ), and y1(α, β, γ ) are C3 with respect to α, β, and γ . If the
carrying capacity fixed point, (L, M), is asymptotically stable, then the 2-cycle is asymptotically
stable.

By Corollary 4.2, Table 2 also describes parameter regions for the occurrence of an asymp-
totically stable 2-cycle in the four population models given in Table 1 under small period-two
perturbations of the parameters near the carrying capacity fixed point. In Section 5, we derive an
equation for the average total biomass of these 2-cycles.

5. Resonance versus attenuance: 2-cycle bifurcation from unforced carrying capacity

In single-species population models, small perturbations of a single parameter usually generate
either attenuant or resonant cycles but not both, whereas small perturbations in single-species pop-
ulation models of two parameters can generate both attenuant and resonant 2-cycles that depend
on the relative strengths of the fluctuations [11,14]. We demonstrate that small perturbations of the
six parameters in Model (1) generate both attenuant and resonant 2-cycles depending on the rela-
tive strengths of the fluctuations. As in the previous sections, we assume that the 2-cycle must, for
small forcing, be close to the carrying capacity fixed point and that the model is competitive. For
this 2-cycle, we derive a signature function, Rd , for determining whether the average total biomass
is enhanced via resonance or suppressed via attenuance. We also define signature functions, Sd

and Td , to determine how each individual species responds to the alternating environment.
When the carrying capacity fixed point, (L, M), of Equation (2) is hyperbolic, Corollary 4.2

guarantees that the 2-cycle solution of Model (10) may be expanded in terms of α, β, and γ as
follows:(

x0(α, β, γ )

y0(α, β, γ )

)
=

(
L + x̂0(α, β, γ ) + x013αγ + x022β

2 + x023βγ + x033γ
2 + R0(α, β, γ )

M + ŷ0(α, β, γ ) + y013αγ + y022β
2 + y023βγ + y033γ

2 + S0(α, β, γ )

)
,

(11)
where

x̂0(α, β, γ ) = x01α + x02β + x03γ + x011α
2 + x012αβ,

ŷ0(α, β, γ ) = y01α + y02β + y03γ + y011α
2 + y012αβ,

and

x01, x02, x03, x011, x012, x013, x022, x023, x033,

y01, y02, y03, y011, y012, y013, y022, y023, y033
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are the expansion coefficients and R0(α, β, γ ) and S0(α, β, γ ) are the remainder terms. Since x0

and y0 are C3 with respect to α, β, and γ ,

lim
(α,β,γ )→(0,0,0)

R0(α, β, γ )

α2 + β2 + γ 2
= lim

(α,β,γ )→(0,0,0)

S0(α, β, γ )

α2 + β2 + γ 2
= 0.

The expansion of the second point in the 2-cycle with respect to α, β, and γ is similar:(
x1(α, β, γ )

y1(α, β, γ )

)
=

(
L + x̂1(α, β, γ ) + x113αγ + x122β

2 + x123βγ + x133γ
2 + R1(α, β, γ )

M + ŷ1(α, β, γ ) + y113αγ + y122β
2 + y123βγ + y133γ

2 + S1(α, β, γ )

)
,

(12)
where

x̂1(α, β, γ ) = x11α + x12β + x13γ + x111α
2 + x112αβ,

ŷ1(α, β, γ ) = y11α + y12β + y13γ + y111α
2 + y112αβ,

and

x11, x12, x13, x111, x112, x113, x122, x123, x133,

y11, y12, y13, y111, y112, y113, y122, y123, y133

are the expansion coefficients and

lim
(α,β,γ )→(0,0,0)

R1(α, β, γ )

α2 + β2 + γ 2
= lim

(α,β,γ )→(0,0,0)

S1(α, β, γ )

α2 + β2 + γ 2
= 0.

The next two lemmas eliminate several of the coefficients in Equations (11) and (12) and
establish the following expression for the average total biomass of the 2-cycle:

x0(α, β, γ ) + y0(α, β, γ ) + x1(α, β, γ ) + y1(α, β, γ )

2

= L + M + (x011 + x111) + (y011 + y111)

2
α2 + (x012 + x112) + (y012 + y112)

2
αβ

+ (x013 + x113) + (y013 + y113)

2
αγ + R0(α, β, γ ) + S0(α, β, γ )

2
+ R1(α, β, γ ) + S1(α, β, γ )

2
.

Similarly, the average biomasses of the individual populations of the x-species and y-species,
respectively, are given by

x0(α, β, γ ) + x1(α, β, γ )

2
= L + x011 + x111

2
α2 + x012 + x112

2
αβ + x013 + x113

2
αγ

+ R0(α, β, γ ) + R1(α, β, γ )

2

and

y0(α, β, γ ) + y1(α, β, γ )

2
= M + y011 + y111

2
α2 + y012 + y112

2
αβ + y013 + y113

2
αγ

+ S0(α, β, γ ) + S1(α, β, γ )

2
.
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794 M.A. Morena and J.E. Franke

Lemma 5.1 In Equations (11) and (12),

x02 = x12 = x03 = x13 = x022 = x122 = x023 = x123 = x033 = x133 = 0,

y02 = y12 = y03 = y13 = y022 = y122 = y023 = y123 = y033 = y133 = 0.

Proof When α = 0,(
x0(0, β, γ )

y0(0, β, γ )

)
=

(
L + x02β + x03γ + x022β

2 + x023βγ + x033γ
2 + R0(0, β, γ )

M + y02β + y03γ + y022β
2 + y023βγ + y033γ

2 + S0(0, β, γ )

)

and (
x1(0, β, γ )

y1(0, β, γ )

)
=

(
L + x12β + x13γ + x122β

2 + x123βγ + x133γ
2 + R1(0, β, γ )

M + y12β + y13γ + y122β
2 + y123βγ + y133γ

2 + S1(0, β, γ )

)
.

However, since α is the fraction of the maximal oscillation of the carrying capacities, the
fixed points of f1B(1±eγ ),C(1+±f γ ),S(1±cβ),T(1±dβ),L,M and f2B(1±eγ ),C(1+±f γ ),S(1±cβ),T(1±dβ),L,M are both (L, M). Thus, for
α = (0, β, γ ), we have F(P(α, L, M)) = (L, M), and hence(

x0(0, β, γ )

y0(0, β, γ )

)
=

(
x1(0, β, γ )

y1(0, β, γ )

)
=

(
L
M

)
.

This forces

x02 = x12 = x03 = x13 = x022 = x122 = x023 = x123 = x033 = x133 = 0,

y02 = y12 = y03 = y13 = y022 = y122 = y023 = y123 = y033 = y133 = 0. �

By this result, the coefficients of the relative strengths of β, γ , β2, βγ , and γ 2 in Equations (11)
and (12) are zero. The next result establishes that the sum of the coefficients of the relative strengths
of α in Equations (11) and (12) is also zero.

Lemma 5.2 If JG(P(0, L, M)) �= 0, then

x01 + x11 = y01 + y11 = 0.

Proof We have(
x1(α, β, γ )

y1(α, β, γ )

)
=

(
f1B(1+eγ ),C(1+f γ ),S(1+cβ),T(1+dβ),L(1+aα),M(1+bα)

(x0(α, β, γ ), y0(α, β, γ ))

f2B(1+eγ ),C(1+f γ ),S(1+cβ),T(1+dβ),L(1+aα),M(1+bα)
(x0(α, β, γ ), y0(α, β, γ ))

)

=
(

x0(α, β, γ )g1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β, γ ), y0(α, β, γ ))

y0(α, β, γ )g2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β, γ ), y0(α, β, γ ))

)
,

where B̂ = B(1 + eγ ), Ĉ = C(1 + f γ ), Ŝ = S(1 + cβ), T̂ = T(1 + dβ), L̂ = L(1 + aα), and
M̂ = M(1 + bα). Similarly,(

x0(α, β, γ )

y0(α, β, γ )

)
=

(
f1B(1−eγ ),C(1−f γ ),S(1−cβ),T(1−dβ),L(1−aα),M(1−bα)

(x0(α, β, γ ), y1(α, β, γ ))

f2B(1−eγ ),C(1−f γ ),S(1−cβ),T(1−dβ),L(1−aα),M(1−bα)
(x0(α, β, γ ), y1(α, β, γ ))

)

=
(

x1(α, β, γ )g1(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))

y1(α, β, γ )g2(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))

)
,
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where B̃ = B(1 − eγ ), C̃ = C(1 − f γ ), S̃ = S(1 − cβ), T̃ = T(1 − dβ), L̃ = L(1 − aα), and
M̃ = M(1 − bα). Therefore,

x11 = ∂[x0(α, β, γ )g1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β, γ ), y0(α, β, γ ))]
∂α

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

and

x01 = ∂[x1(α, β, γ )g1(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))]
∂α

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

,

and we obtain

x11 = x01

(
1 + L

∂g1

∂x

∣∣∣∣
P(L,M)

)
+ y01L

∂g1

∂y

∣∣∣∣
P(L,M)

+ aL2 ∂g1

∂L

∣∣∣∣
P(L,M)

+ bLM
∂g1

∂M

∣∣∣∣
P(L,M)

,

x01 = x11

(
1 + L

∂g1

∂x

∣∣∣∣
P(L,M)

)
+ y11L

∂g1

∂y

∣∣∣∣
P(L,M)

− aL2 ∂g1

∂L

∣∣∣∣
P(L,M)

− bLM
∂g1

∂M

∣∣∣∣
P(L,M)

.

Adding produces

(x01 + x11)L
∂g1

∂x

∣∣∣∣
P(L,M)

+ (y01 + y11)L
∂g1

∂y

∣∣∣∣
P(L,M)

= 0. (13)

Likewise,

y11 = ∂[y0(α, β, γ )g2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β, γ ), y0(α, β, γ ))]
∂α

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

and

y01 = ∂[y1(α, β, γ )g2(B̃, C̃, S̃, T̃ , L̃, M̃), x1(α, β, γ ), y1(α, β, γ ))]
∂α

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

imply that

y11 = y01

(
1 + M

∂g2

∂y

∣∣∣∣
P(L,M)

)
+ x01M

∂g2

∂x

∣∣∣∣
P(L,M)

+ aLM
∂g2

∂L

∣∣∣∣
P(L,M)

+ bM2 ∂g2

∂M

∣∣∣∣
P(L,M)

,

y01 = y11

(
1 + M

∂g2

∂y

∣∣∣∣
P(L,M)

)
+ x11M

∂g2

∂x

∣∣∣∣
P(L,M)

− aLM
∂g2

∂L

∣∣∣∣
P(L,M)

− bM2 ∂g2

∂M

∣∣∣∣
P(L,M)

.

Adding produces

(y01 + y11)M
∂g2

∂y

∣∣∣∣
P(L,M)

+ (x01 + x11)M
∂g2

∂x

∣∣∣∣
P(L,M)

= 0. (14)

Solving Equations (13) and (14), we find

(y01 + y11)

(
∂g1

∂x

∂g2

∂y
− ∂g2

∂x

∂g1

∂y

)∣∣∣∣
P(L,M)

= 0.
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796 M.A. Morena and J.E. Franke

Since ((∂g1/∂x)(∂g2/∂y) − (∂g2/∂x)(∂g1/∂y))|P(L,M) �= 0, we have

y01 + y11 = 0.

A similar calculation yields x01 + x11 = 0. �

Let

Rd =

⎧⎪⎨
⎪⎩

sign((w1 + v1)α + (w2 + v2)β + (w3 + v3)γ ) if α > 0,

0 if α = 0,

−sign((w1 + v1)α + (w2 + v2)β + (w3 + v3)γ ) if α < 0,

where

w1 = x011 + x111

2
, w2 = x012 + x112

2
, w3 = x013 + x113

2
,

and

v1 = y011 + y111

2
, v2 = y012 + y112

2
, v3 = y013 + y113

2
.

Rd is the sign of a weighted sum of the relative strengths of the oscillations of the carrying
capacity fixed point, the individual carrying capacities, and the two arbitrary model parameters.
When u1 = w1 + v1, u2 = w2 + v2, and u3 = w3 + v3, a compact expression for Rd is

Rd = sign(α(u1α + u2β + u3γ )).

Let

Sd =

⎧⎪⎨
⎪⎩

sign(w1α + w2β + w3γ ) if α > 0,

0 if α = 0,

−sign(w1α + w2β + w3γ ) if α < 0,

and

Td =

⎧⎪⎨
⎪⎩

sign(v1α + v2β + v3γ ) if α > 0,

0 if α = 0,

−sign(v1α + v2β + v3γ ) if α < 0.

Both Sd and Td are also the sign functions of a weighted sum of the relative strengths of the
oscillations of the carrying capacity fixed point, the individual carrying capacities, and the two
arbitrary model parameters. Sd and Td may be written compactly as

Sd = sign(α(w1α + w2β + w3γ )),

Td = sign(α(v1α + v2β + v3γ )).

In the following result, we show that Rd indicates when the 2-cycle is either attenuant or
resonant. Analogous results follow for Sd and Td , which describe the individual responses of the
x-species and y-species, respectively, to a periodic environment.

Theorem 5.3 If the carrying capacity fixed point of Model (1) is hyperbolic, then for sufficiently
small |α|, |β|, and |γ |, Model (10) has an attenuant (a resonant) 2-cycle if Rd is negative
(positive).

D
ow

nl
oa

de
d 

by
 [

N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
9:

47
 0

2 
A

ug
us

t 2
01

2 



Journal of Biological Dynamics 797

Proof Lemmas 5.1 and 5.2 establish that the average of the 2-cycle predicted in Corollary 4.2
satisfies

x0(α, β, γ ) + y0(α, β, γ ) + x1(α, β, γ ) + y1(α, β, γ )

2

= L + M + α(u1α + u2β + u3γ ) + R0(α, β, γ ) + S0(α, β, γ )

2
+ R1(α, β, γ ) + S1(α, β, γ )

2
.

Since

lim
(α,β,γ )→(0,0,0)

R0(α, β, γ )

α2 + β2 + γ 2
= lim

(α,β,γ )→(0,0,0)

R1(α, β, γ )

α2 + β2 + γ 2
= 0

and

lim
(α,β,γ )→(0,0,0)

S0(α, β, γ )

α2 + β2 + γ 2
= lim

(α,β,γ )→(0,0,0)

S1(α, β, γ )

α2 + β2 + γ 2
= 0,

the sign of
x0(α, β, γ ) + y0(α, β, γ ) + x1(α, β, γ ) + y1(α, β, γ )

2
− (L + M)

is the same as the sign of α(u1α + u2β + u3γ ), which is Rd . Thus, if

x0(α, β, γ ) + y0(α, β, γ ) + x1(α, β, γ ) + y1(α, β, γ )

2
− (L + M) > 0,

then the 2-cycle is resonant and if

x0(α, β, γ ) + y0(α, β, γ ) + x1(α, β, γ ) + y1(α, β, γ )

2
− (L + M) < 0,

the 2-cycle is attenuant. �

Theorem 5.4 If the carrying capacity fixed point of Model (1) is hyperbolic, then for all suffi-
ciently small |α|, |β|, and |γ |, the x-species in Model (10) has an attenuant (a resonant) 2-cycle
if Sd is negative (positive).

Theorem 5.5 If the carrying capacity fixed point Model (1) is hyperbolic, then for all sufficiently
small |α|, |β|, and |γ |, the y-species in Model (10) has an attenuant (a resonant) 2-cycle if Td is
negative (positive).

As demonstrated in Lemma 5.1, when both the individual carrying capacities, S and T , and the
two arbitrary model parameters, B and C, are fluctuating but the parameters L and M are constant
(i.e. α = 0, β �= 0, and γ �= 0), the 2-cycle degenerates into a fixed point at the carrying capacity
fixed point. However, if the carrying capacity fixed point, (L, M), is fluctuating while the remaining
parameters are constant (α �= 0, β = 0, and γ = 0), Theorem 5.3 gives the following result.

Corollary 5.6 If the carrying capacity fixed point of Model (1) is hyperbolic and the individual
carrying capacities, S and T , as well as the two arbitrary model parameters, B and C, are all
constant (β, γ = 0), then for all sufficiently small |α|,

(i) Rd = sign(u1) and Model (10) has an attenuant (a resonant) 2-cycle if u1 is negative
(positive).

(ii) Sd = sign(w1) and the x-species in Model (10) has an attenuant (a resonant) 2-cycle if w1

is negative (positive).
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798 M.A. Morena and J.E. Franke

(iii) Td = sign(v1) and the y-species in Model (10) has an attenuant (a resonant) 2-cycle if v1 is
negative (positive).

Population models with six parameters which are 2-periodically forced are capable of
experiencing both resonance and attenuance. We formalize this in the following result.

Corollary 5.7 If the carrying capacity fixed point of Model (1) is hyperbolic, then for all
sufficiently small |α|, |β|, and |γ |, Model (10) has an attenuant 2-cycle and a resonant 2-cycle
for different choices of α, β, and γ , provided that either u2 or u3 is non-zero.

Proof If u2 > 0, take α > 0, β < −u1α/u2, and γ = 0. Then, u1α + u2β + u3γ < 0, and Rd =
sign(α(u1α + u2β + u3γ )) is negative. The 2-cycle is therefore attenuant. For a resonant 2-cycle,
take α > 0, β > −u1α/u2, and γ = 0. If u2 < 0, take α > 0, β > −u1α/u2 (β < −u1α/u2),
and γ = 0 to obtain an attenuant (resonant) 2-cycle. Similar arguments establish the rest of
the proof. �

Analogous results hold for Model (10) when considering the x-species or y-species separately.
In this case, either substitute w1, w2, and w3 or v1, v2, and v3 for u1, u2, and u3, respectively,
in Corollary 5.7 to see that if either w2 or w3 is non-zero or either v2 or v3 is non-zero, then
Model (10) is capable of generating both attenuant and resonant 2-cycles in the x-species or
y-species, respectively.

6. Signature functions for classical models

In this section, we use our theorems to study the impact of the combined effects of fluctuations in
the carrying capacities and in the arbitrary model parameters on the average total biomass of each
population governed by the models given in Table 1. Appendix 1 provides more specific details
for obtaining general formulas for Rd , Sd , and Td in terms of g1 and g2 and the partial derivatives
of g1 and g2, all evaluated at P(L, M). Unfortunately, each of these formulas is much too long to
be included, and for these reasons, we instead present some interesting results for the special case
where B = C, S = T , and L = M.

Under these conditions, the growth rate functions of Equation (3) reduce to

g1(B, C, S, T , L, M, x, y) = g

(
B, S, x + S − L

L
y

)
,

g2(B, C, S, T , L, M, x, y) = g

(
B, S,

S − L

L
x + y

)
,

from which it may be inferred that (S − L)/L must be close to 1 (with S < 2L) in order for a
subtle mutation to have occurred within the x-species, say. In this situation, the two competing
species share many common features, such as carrying capacities and intrinsic growth rates, as
could result from one species undergoing a mutation to produce a second competitive species
with very similar characteristics. For less subtle mutations, L could increase from below to almost
S and still maintain a positive carrying capacity in the model.

We observe what effects fluctuations in the parameters have on the total average biomass of the
system as well as on each species. The signature functions are computed in order to investigate
regions in the parameter space of attenuance and resonance of the 2-cycle which is perturbed from
the carrying capacity fixed point.
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In each model, the six constants a, b, c, d, e, and f are the maximal fractional oscillations of
the six parameters, while the parameters S, T , L, and M are also consistent with the general
periodically forced model (10). The arbitrary parameters B and C are regarded in the Logistic,
Ricker, and Beverton–Holt (with B, C > 1) models as inherent growth rates, but in the Hassell
model, they are more complicated and are taken instead to be demographic parameters.

Recall that each model given in Table 1 is assumed to be competitive at the carrying capacity
fixed point. This is realized if and only if ∂g1/∂y and ∂g2/∂x are both negative when evaluated
at P(L, L), the carrying capacity in this special case. Finally, we continue with the notation of
Model (10) by using

B = B(1 + eγ (−1)t), C = C(1 + f γ (−1)t),

S = S(1 + cβ(−1)t), T = T(1 + dβ(−1)t),

L = L(1 + aα(−1)t), M = M(1 + bα(−1)t)

in the models.

6.1. Model I, Logistic

Both the carrying capacities and the inherent growth rates are 2-periodically forced in Model (10).
Using the classic Logistic model, we obtain

x(t + 1) = x(t)

(
1 + B

(
1 − x(t)M − y(t)L + y(t)S

MS

))
,

y(t + 1) = y(t)

(
1 + C

(
1 − −x(t)M + y(t)L + x(t)T

LT

))
.

(15)

According to Table 2, the carrying capacity fixed point in a constant environment is
asymptotically stable as long as

4ST > BLT + CMS, MS + LT > ST

and

(4 − BC)ST > (2 − C)BLT + (2 − B)CMS.

In the special case when B = C, S = T , and L = M, these stability conditions become

4T 2 > 2CLT , 2LT > T 2 and (4 − C2)T 2 > 2(2 − C)CLT .

Using the fact that C, T , and L are positive gives

2T/L > C, 2L > T and (4 − C2)T > 2(2 − C)CL.

For the Logistic model,
∂g1

∂y

∣∣∣∣
P(L,L)

= ∂g2

∂x

∣∣∣∣
P(L,L)

= C(L − T)

LT
,

and its competitive condition is thus

L < T .

Integrating this requirement into the above stability conditions gives

L < T < 2L, C < 2T/L, and (C − 2)(2CL − CT − 2T) > 0.
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800 M.A. Morena and J.E. Franke

Note that 2CL − CT − 2T = 0 when C = 2T/(2L − T) and, since L > 2L − T > 0, we obtain

2 <
2T

L
<

2T

2L − T
.

Because (C − 2)(2CL − CT − 2T) = 0 is a concave up parabola in C, and C is less than the
larger horizontal intercept, it must be less than the smaller one as well. Thus, the stability and
competition conditions together reduce to simply

L < T < 2L and 0 < C < 2.

Under these conditions, Corollary 4.2 predicts a stable 2-cycle in Model (15).
Since we are looking at the scenario where B = C, S = T , and L = M, we begin by considering

the case where the maximal oscillations in these pairs of parameters are also equal; that is, when
a = b, c = d, and e = f . The calculations discussed in Appendix 1 give

w1 = v1 = −4b2L

(C − 2)2
,

w2 = v2 = 0,

w3 = v3 = −2bfL

C − 2
,

u1 = −8b2L

(C − 2)2
,

u2 = 0,

u3 = −4bfL

C − 2
,

Rd = sign

(−4bL

C − 2
α

(
2b

C − 2
α + f γ

))
,

Sd = sign

(−2bL

C − 2
α

(
2b

C − 2
α + f γ

))
,

Td = sign

(−2bL

C − 2
α

(
2b

C − 2
α + f γ

))
.

Since Sd = Td , the resonant and attenuant properties of the two individual species are exactly
the same. On the stable region, C < 2. Thus, if there is no fluctuation in the inherent growth
rates (γ = 0), then all three of the signature functions are negative on the stable region and we
get attenuance of each species as well as of the total biomass. In contrast, we observe a resonant
situation in the Logistic model when the fluctuations in the inherent growth rates are strong
enough, namely when α > 0 and

γ >
2b

f (2 − C)
α.

This is confirmed by Corollary 5.7.
Fluctuations in the components of the carrying capacity for the system (L, M), which is (L, L)

in our special case, are of paramount importance and should be investigated if they are fluctuating
differently. To study this case, we let c = d and e = f , but allow a and b to vary. This effectively
synchronizes the fluctuations of the intrinsic growth rates and of the individual carrying capacities,
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but not the fluctuations of the carrying capacities of the system. Here,

w2 = −v2 = 2(a − b)dTL2

(2L − T)(CT + 2T − 2LC)
,

which forces u2 = 0. This means that the resonance or attenuance of the total biomass is not a
function of the fluctuations in the individual carrying capacities. Instead, w2 and v2 are functions
of (a − b) and change sign when a = b. In particular, w2 > 0 when a > b, assuming that we are
in the stable region.

When a �= b, the relationship between w1 and v1 is more complicated. They become 2-forms
in a and b and are equal when C = 2T(L − T)/(−4LT + T 2 + 2L2), which lies inside the stable
region. Their difference,

w1 − v1 = 2L(a − b)(a + b)(2L2C + CT 2 − 2LT − 4LCT + 2T 2)

(C − 2)(2L − T)(CT + 2T − 2LC)
,

also changes sign when a = ±b and has a negative denominator in the stable region.
The quantities w1 and v1 are functions of a, b, C, T , and L, but if we restrict to a given hyperplane,

L = kT , the surface where u1 = w1 + v1 = 0 is only a function of a, b, and C. Taking γ = 0 and
L = 3T/4, the equation of the surface where u1 = 0 is

a2C3 + b2C3 − 2abC3 + 14abC2 − 5a2C2 − 5b2C2

+ 4a2C + 4b2C − 40abC + 48ab + 8b2 + 8a2 = 0.

Figure 1 shows where the total biomass is resonant and attenuant within the stable region. One
observation from the graph is that when a and b have opposite signs and C is small, we can be in
a resonance region. Another observation is that the attenuance region is larger than the resonance
region and includes all of the cases where a and b have the same sign.

Figure 1. Regions of attenuance and resonance in the a, b, and C plane for the 2-periodic Logistic model when γ = 0
and L = 3T/4.
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802 M.A. Morena and J.E. Franke

6.2. Model II, Ricker

When both the carrying capacities and the inherent growth rates are 2-periodically forced as in
Model (10), the classic Ricker model becomes

x(t + 1) = x(t) exp

[
B

(
1 − x(t)M − y(t)L + y(t)S

MS

)]
,

y(t + 1) = y(t) exp

[
C

(
1 − −x(t)M + y(t)L + x(t)T

LT

)]
.

(16)

From Table 2, in a constant environment, the conditions needed for the carrying capacity fixed
point to be asymptotically stable in the Ricker model are exactly the same as those in the Logistic
model. Since the derivatives at the carrying capacity fixed point are also identical, the stable region
for our Ricker model at B = C, S = T , and L = M is the same as that for the Logistic model:

L < T < 2L and 0 < C < 2.

To see how two slightly mutated populations governed by a Ricker-type model respond to an
alternating environment, we let B = C, S = T , and L = M and then set the maximal oscillations
in these pairs of parameters equal; that is, a = b, c = d, and e = f . The calculations obtained
from Appendix 1 give

w1 = v1 = 2b2L

C − 2
,

w2 = v2 = 0,

w3 = v3 = −2bfL

C − 2
,

u1 = 4b2L

C − 2
,

u2 = 0,

u3 = −4bfL

C − 2
,

Rd = sign

(
4bL

C − 2
α(bα − f γ )

)
,

Sd = sign

(
2bL

C − 2
α(bα − f γ )

)
,

Td = sign

(
2bL

C − 2
α(bα − f γ )

)
.

The similarities between the Ricker model and the Logistic model continue with w3, v3, and u3

being the same for both models.
Once more Sd = Td , and the resonant and attenuant dynamics of the two individual species are

exactly the same. As with the Logistic model, if there are no oscillations in the inherent growth
rates (γ = 0), then all three of the signature functions are negative on the stable region (C < 2),
and we witness attenuance of each species as well as of the total biomass. Resonance is still
possible in Model (16), provided the oscillations in the inherent growth rates are strong enough.
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According to Corollary 5.7, this occurs when α > 0 and

γ f > αb.

Since b is the maximal fractional oscillation and α is the fraction of the maximal oscillation in
the carrying capacity of the system, αb is the fractional oscillation in the carrying capacity of the
system. Similarly, γ f is the fractional oscillation in the inherent growth rate. Thus, if α > 0 and
the fractional oscillation in the inherent growth rate is larger than the fractional oscillation in the
carrying capacity of the system, then the 2-cycle of the Ricker model is resonant.

Oscillations in the components of the carrying capacity for this system, which is (L, L) in this
scenario, are of particular importance and, if they are fluctuating differently, should be investigated.
In this case, we let c = d and e = f but assume that a and b can be different. The formulas for w2

and v2 turn out the same as those in the Logistic model, where

w2 = −v2 = 2(a − b)dTL2

(2L − T)(CT + 2T − 2LC)
.

Hence u2 = 0, and therefore neither the resonance nor the attenuance of the total biomass is a
function of the fluctuations in the individual carrying capacities. Note that the denominator is
positive in the stable region. From this formula, w2 and v2 are functions of (a − b) which change
sign at a = b, giving w2 > 0 when a > b.

The relationship between w1 and v1 is no longer straightforward if a �= b. They are 2-forms in
a and b and are equal when C = T/L, which belongs to the stable region. Their difference,

w1 − v1 = 4L(a − b)(a + b)(L − T)(LC − T)

(2L − T)(C − 2)(CT + 2T − 2LC)
,

also changes sign when a = ±b.
As in the Logistic model, w1 and v1 are the functions of a, b, C, T , and L. Restricting to a given

hyperplane, L = kT , again reduces the surface where u1 = 0 to a more manageable function of
three parameters, a, b, and C. To stay in the stable region, we must restrict 1/2 < k < 1, but the
surface retains its same basic shape for this range of k. Taking γ = 0, there are four distinct regions,
two giving attenuance and two giving resonance. Taking γ = 0 and L = 3T/4, the equation of
the surface where u1 = 0 is

2abC − 6ab − a2 − b2 = 0.

Figure 2 illustrates where the total biomass is resonant and attenuant in the stable region. A
comparison of Figures 1 and 2 indicates that the regions of attenuance and resonance for the
Logistic model and Ricker model are very similar but not completely identical.

6.3. Model III, Beverton–Holt

If both the carrying capacities and the inherent growth rates are 2-periodically forced, as in
Model (10), the classic Beverton–Holt model becomes

x(t + 1) = x(t)
BMS

(B − 1)MS + x(t)M − y(t)L + y(t)S ,

y(t + 1) = y(t)
CLT

(C − 1)LT − x(t)M + y(t)L + x(t)T .

(17)

From Table 2, the carrying capacity fixed point, (L, M), is asymptotically stable in a constant
environment, provided

4BCST > CLT + BMS, LT + MS > ST
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804 M.A. Morena and J.E. Franke

Figure 2. Regions of attenuance and resonance in the a, b, and C plane for the 2-periodic Ricker model for γ = 0 and
L = 3T/4.

and

(4BC − 1)ST > (2C − 1)LT + (2B − 1)MS.

Taking B = C, S = T , and L = M, these equations reduce to

4C2T 2 > 2CLT , 2LT > T 2, and (4C2 − 1)T 2 > 2(2C − 1)LT .

Since C, T , L > 0, we have

2CT > L, 2L > T , and (2C − 1)((2C + 1)T − 2L) > 0.

Note that the Beverton–Holt model requires L < T for competition because

∂g1

∂y

∣∣∣∣
P(L,L)

= ∂g2

∂x

∣∣∣∣
P(L,L)

= L − T

CLT
.

Hence,

L < T < 2L, L < 2CT , and (2C − 1)((2C + 1)T − 2L) > 0.

The factors (2C − 1) and ((2C + 1)T − 2L) must have the same sign for stability. In the classic
Beverton–Holt model, C > 1, which implies (2C + 1)T − 2L > 0 or, equivalently, C > (2L −
T)/2T . Inside the stable region,

0 <
2L − T

2T
<

L

2T
<

1

2
.

Thus, the stability conditions together with the competition condition simplify to

L < T < 2L and C > 1.

Under these conditions, Corollary 4.2 predicts a stable 2-cycle in Model (17).
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We are investigating the case where B = C, S = T , and L = M, and as before, we start by
looking at the situation when the maximal oscillations in these pairs of parameters are also equal
(when a = b, c = d, and e = f ). The calculations in Appendix 1 give

w1 = v1 = −4b2CL(C − 1)

(2C − 1)2
,

w2 = v2 = 0,

w3 = v3 = − 2bfCL

2C − 1
,

u1 = −8b2CL(C − 1)

(2C − 1)2
,

u2 = 0,

u3 = − 4bfCL

2C − 1
,

Rd = sign

(−4bCL

2C − 1
α

(
2b(C − 1)

2C − 1
α + f γ

))
,

Sd = sign

(−2bCL

2C − 1
α

(
2b(C − 1)

2C − 1
α + f γ

))
,

Td = sign

(−2bCL

2C − 1
α

(
2b(C − 1)

2C − 1
α + f γ

))
.

Again, Sd = Td , and the resonant and attenuant properties of the two individual species are
exactly the same. If there are no fluctuations in the inherent growth rates (γ = 0), then all three
of the signature functions are negative within the stable region (C > 1), and we thus observe
attenuance in each species as well as in the total biomass. Attenuance is also possible when γ is
non-zero, as long as α and γ have the same sign. However, to observe a resonant response, α and
γ must have opposite signs with

|γ | >
2b(C − 1)

f (2C − 1)
|α|.

This is implied by Corollary 5.7.
Next, we consider the situation where the components of the carrying capacity for the system,

(L, L) in this special case, might be oscillating differently, but the fluctuations of the remaining
parameters are synchronized. We fix c = d and e = f , but allow a and b to differ. The simplest
result in this case is

w2 = −v2 = 2(a − b)dCTL2

(2L − T)(2CT + T − 2L)
,

which has a positive denominator in the stable region. This gives u2 = 0, which means that
the resonance or attenuance of the total biomass is not a function of the fluctuations in the
individual carrying capacities. Instead, w2 and v2 are functions of (a − b) and change sign at
a = b, with w2 > 0 when a > b. This is the same inequality we observe in both the Ricker and
Logistic models.

As with Models (15) and (16), the relationship in the Beverton–Holt model between w1 and v1

is more complicated when a �= b as they are again 2-forms in both a and b. They are equal when
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806 M.A. Morena and J.E. Franke

C = (2L2 − T 2)/2T(L − T), but, unlike the previous two models, this intersection does not lie
inside the stable region. Their difference,

w1 − v1 = 2(a − b)(a + b)(−2CT 2 + 2LTC + T 2 − 2L2)CL

(2C − 1)(2L − T)(2CT + T − 2L)
,

changes sign only when a = b or when a = −b. Therefore, the only time w1 = v1 within the
stable region is at a = ±b.

The quantities w1 and v1 are still functions of a, b, C, T , and L. By restricting to a given
hyperplane, L = kT , the surface where u1 = 0 reduces to one of three variables, a, b, and C. We
must restrict 1/2 < k < 1 in order to remain inside the stable region, but we find that the surface
maintains a similar shape for these values of k. If γ = 0, there are four distinct regions, two giving
attenuance and two giving resonance. Further taking γ = 0 and L = 3T/4, the equation of the
surface where u1 = 0 is

8a2C3 + 8b2C3 + 48abC3 − 16a2C2 − 16b2C2

− 64abC2 + 7a2C + 7b2C + 22abC − 2ab − b2 − a = 0.

Figure 3 reveals the locations in the stable zone where the total biomass is resonant and attenuant
for k = 3/4. One observation from the graph is that when a and b have the same sign, we are
usually (but not always) in an attenuance region. For instance, when C is close to 1, there are
positive values for a and b that give resonance. Another observation is that the resonance region
is larger than the attenuance region. This is opposite of what we observe in the Logistic and
Ricker models.

Figure 3. Regions of attenuance and resonance in the a, b, and C plane for the 2-periodic Beverton–Holt model with
γ = 0 and L = 3T/4.
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6.4. Model IV, Hassell

In the Hassell model, the B and C parameters are exponents.As a consequence, their roles are more
complicated than in the previous three models but can be thought of as demographic parameters.
When the carrying capacities and the demographic parameters are 2-periodically forced as in
Model (10), the classic Hassell model becomes

x(t + 1) = x(t)
(M(1 + S))B

(M + x(t)M − y(t)L + y(t)S)B
,

y(t + 1) = y(t)
(L(1 + T ))C

(L − x(t)M + y(t)L + x(t)T )C
.

(18)

According to Table 2, the carrying capacity fixed point is asymptotically stable in a constant
environment whenever

4(1 + S)(1 + T) > BL(1 + T) + CM(1 + S), LT + MS > ST ,

and

(4 − BC)ST + 4(1 + S + T) > (2 − C)BLT + (2 − B)CMS + 2(BL + CM).

In the special case where B = C, S = T , and L = M, these conditions simplify to

4(1 + T)2 > 2CL(1 + T), 2LT > T 2,

and

(4 − C2)T 2 + 4(1 + 2T) > 2(2 − C)CLT + 4CL.

Because C, T , and L are positive, these conditions reduce further to

2(1 + T) > CL, 2L > T ,

and

0 < 4T 2 − C2T 2 + 4 + 8T − 2(2 − C)CLT − 4CL = (2T − CT + 2)(CT − 2CL + 2T + 2).

For this Hassell model,

∂g1

∂y

∣∣∣∣
P(L,L)

= ∂g2

∂x

∣∣∣∣
P(L,L)

= C(L − T)

L(1 + T)
,

and so its competitive condition must be

L < T .

Hence,

L < T < 2L, C <
2T + 2

L
, and (2T − CT + 2)(CT − 2CL + 2T + 2) > 0.

For stability, the factors

(2T − CT + 2) and (CT − 2CL + 2T + 2) (19)
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808 M.A. Morena and J.E. Franke

must have the same sign, but are zero when C = (2T + 2)/T and C = (2T + 2)/(2L − T). Since
T > L > L + (L − T) = 2L − T > 0, we have

2T + 2

T
<

2T + 2

L
<

2T + 2

2L − T
.

Each factor in Equation (19) is negative when C is below the two surfaces, but note that C <

(2T + 2)/L and so we must be below the middle surface. Thus, C < (2T + 2)/T , and the stable
region is defined by

L < T < 2L and C <
2T + 2

T
.

Since we are considering the special case where B = C, S = T , and L = M, we start by taking
the maximal oscillations in these pairs of parameters to be equal (taking a = b, c = d, and e = f ).
The formulas from Appendix 1 give

w1 = v1 = 2b2L(CT + T 2C − 3T − T 2 − 2)

(2T − CT + 2)2
,

w2 = v2 = 2bdL

2T − CT + 2
,

w3 = v3 = 2bfL(1 + T)

2T − CT + 2
,

u1 = 4b2L(CT + T 2C − 3T − T 2 − 2)

(2T − CT + 2)2
,

u2 = 4bdL

2T − CT + 2
,

u3 = 4bfL(1 + T)

2T − CT + 2
,

Rd = sign

(
4bL

2T − CT + 2
α

(
b(T + 1)(CT − T − 2)

2T − CT + 2
α + dβ + f (T + 1)γ

))
,

Sd = sign

(
2bL

2T − CT + 2
α

(
b(T + 1)(CT − T − 2)

2T − CT + 2
α + dβ + f (T + 1)γ

))
,

Td = sign

(
2bL

2T − CT + 2
α

(
b(T + 1)(CT − T − 2)

2T − CT + 2
α + dβ + f (T + 1)γ

))
.

Once more Sd = Td , and the resonant and attenuant properties of the two individual species are
identical. Note also that no longer is w2 = 0 = v2.

The signs of w1, v1, and u1 change from negative to positive as C goes from below to above
C = (3T + T 2 + 2)/(T 2 + T) = (T + 2)/T . Since (T + 2)/T < (2T + 2)/T , this sign change
occurs inside the stable region. With β = 0 and γ = 0, we get attenuance in the stable region
when C < (T + 2)/T and resonance when C > (T + 2)/T . This is in marked contrast to what we
have seen in the first three models where only attenuance is observed. Since all of the remaining
w2, v2, u2, w3, v3, and u3 are positive everywhere on the stable region, we get resonance in the
stable region provided that α, β, and γ are all positive and C > (T + 2)/T .

Fluctuations in the components of the carrying capacity (L, M), which is (L, L) in our special
case, are of particular importance and should be investigated if they are oscillating differently.
We thus fix c = d and e = f , but assume that a and b can vary. This Hassell model gives results
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Journal of Biological Dynamics 809

that are quite different from those obtained for our first three models. In particular, u2 �= 0 since
w2 �= −v2. Instead,

u2 = 2(a + b)dL

2T − CT + 2
,

which is positive in the stable region if a + b > 0 and negative when a + b < 0.
The relationship between w1 and v1 is also more complicated than those of the other three

models. This time both are different 2-forms in a and b and are equal on the surface:

C = 2L − T 2 − 2T

2L(L − T)
,

which cuts through the model’s stable region. Their difference,

w1 − v1 = 2L(a − b)(a + b)(T + 1)(T 2 − 2CLT + 2T + 2CL2 − 2L)

(2L − T)(2T − CT + 2)(CT − 2LC + 2T + 2)
,

also changes sign when a ± b, meaning w1 and v1 are equal in the stable region if a = ±b.
Where u1 changes sign is a function of a, b, C, T , and L. Unfortunately, when we fix a hyper-

plane, L = kT , the surface where u1 = 0 is now a function of a, b, C, and T . This would require a
four-dimensional graph to illustrate and so we cannot provide one. The equation for the surface is
a 2-form in a and b, but cubic in both C and T . One can analyse u1 to observe parameter regimes
in its stable region inducing both attenuance and resonance.

7. Conclusions

Many experimental and theoretical studies predict that single-species populations may either be
enhanced or suppressed by periodic environments [5,9,11,16,18]. We derived a discrete, two-
species, competitive, six-parameter model to investigate the effects of 2-periodic forcing of the
parameters. Our investigation supports these predictions by establishing parameter regions where
the total population is enhanced by the periodic forcing and other regions where it is suppressed.

Two of the parameters in the model give an interior fixed point which is globally attracting
in many example models and acts as the system carrying capacity. The next two parameters are
the carrying capacity of the individual species in the absence of the other. The remaining two
parameters can be quite general, but in our specific examples, they are taken either to be intrinsic
growth rates or to be more general demographic parameters.

The 2-periodic forcing is first realized by assuming that each of the six parameters has a
maximal fractional oscillation. Next, we introduce three bifurcation parameters, α, β, γ ∈ (−1, 1),
in order to investigate the situation where the oscillations in the six model parameters range from
zero to plus or minus the maximal oscillation. These three relative strengths of the oscillation
parameters organize the six model parameters into three groups: the system carrying capacity, the
two individual carrying capacities, and the two arbitrary parameters.

We proved that small 2-periodic fluctuations are capable of supporting 2-cyclic oscillations of
the total biomass of the system and also of each species. We derived signature functions, Rd , Sd ,
and Td , for predicting the responses of the total biomass and of each of the two species to 2-periodic
fluctuations in the six parameters. Each signature function is the sign of a weighted sum of the
three relative strengths of the bifurcation parameters of the oscillations. Periodic environments are
deleterious for the total biomass and for each species when the corresponding signature function
is negative, but are favourable if the corresponding signature function is positive.

We applied these ideas to four models derived from the classic Logistic, Ricker, Beverton–Holt,
and Hassell models and observed both attenuance and resonance in each model. We also observed
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810 M.A. Morena and J.E. Franke

that changes in the relative strengths of these fluctuations can shift a system from attenuance to
resonance or vice versa. The resonance regions in the Logistic and Ricker models are quite similar
and considerably smaller than their attenuance regions, as opposed to the Beverton–Holt model
where the relative sizes of the regions are interchanged. The resonance and attenuance regions
for the Hassell model are more complicated to picture, but in some sense, resonance is a more
likely outcome than in the other three models. Special attention is paid to the situation where the
terms in each pair of the three groups of model parameters are equal and have the same maximal
oscillation. In this case, the two competing species share many common features as could result
from one species undergoing a mutation to produce a second competitive species with very similar
characteristics.

Our results indicate that the response of a population to a periodic environment is a complex
function of the period of the environment, the carrying capacities of the two species, the demo-
graphic characteristic, and the type and nature of the fluctuations. These relationships, which affect
the dynamics of populations living in periodic environments, are implicitly represented in the sig-
nature functions. Further investigations on these relationships and their biological implications
are welcome.
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Appendix 1

Here, we outline the derivation of the formulas for w1, w2, w3, v1, v2, and v3 which determine u1, u2, and u3. From these
coefficients, one may construct the signature functions derived in Section 5 in terms of (B, C, S, T , L, M), (a, b, c, d, e, f ),
g1, g2, and the partial derivatives of g1 and g2. This appendix ends with proofs for Theorems 5.4 and 5.5.

We apply the implicit function theorem to

F (P(α, x, y)) =
(

xg1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y)g1(B̃, C̃, S̃, T̃ , L̃, M̃, xg1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y), yg2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y))
yg2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, yg)g2(B̃, C̃, S̃, T̃ , L̃, M̃, xg1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y), yg2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x, y))

)

as in the proof of Theorem 4.1. The four linear equations found in the proof of Lemma 5.2 are solved to determine the
first derivatives of x0(α, β, γ ) and y0(α, β, γ ) at α = (0, 0, 0), which are

x01 =
L

(
aLM

(
∂g1
∂y

∂g2
∂L − ∂g1

∂L
∂g2
∂y

)
+ bM2

(
∂g1
∂y

∂g2
∂M − ∂g1

∂M
∂g2
∂y

)
− 2

(
aL ∂g1

∂L + bM ∂g1
∂M

))
2

(
L ∂g1

∂x + M ∂g2
∂y

)
+ LM

(
∂g1
∂x

∂g2
∂y − ∂g1

∂y
∂g2
∂x

)
+ 4

,

y01 =
M

(
aL2

(
∂g1
∂L

∂g2
∂x − ∂g1

∂x
∂g2
∂L

)
+ bLM

(
∂g1
∂M

∂g2
∂x − ∂g1

∂x
∂g2
∂M

)
− 2

(
aL ∂g2

∂L + bM ∂g2
∂M

))
2

(
L ∂g1

∂x + M ∂g2
∂y

)
+ LM

(
∂g1
∂x

∂g2
∂y − ∂g1

∂y
∂g2
∂x

)
+ 4

,

where all partial derivatives are evaluated at the carrying capacity fixed point.
Since (

x1(α, β, γ )

y1(α, β, γ )

)
=

(
f1B(1+eγ ),C(1+f γ ),S(1+cβ),T(1+dβ),L(1+aα),M(1+bα)

(x0(α, β, γ ), y0(α, β, γ ))

f2B(1+eγ ),C(1+f γ ),S(1+cβ),T(1+dβ),L(1+aα),M(1+bα)
(x0(α, β, γ ), y0(α, β, γ ))

)

=
(

x0(α, β, γ )g1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β), y0(α, β, γ ))

y0(α, β, γ )g2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β), y0(α, β, γ ))

)
,

we have

2x111 = ∂2[x0(α, β, γ ) g1(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β, γ ), y0(α, β, γ ))]
∂α2

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

,

2y111 = ∂2[y0(α, β, γ ) g2(B̂, Ĉ, Ŝ, T̂ , L̂, M̂, x0(α, β, γ ), y0(α, β, γ ))]
∂α2

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

.

Similarly, (
x0(α, β, γ )

y0(α, β, γ )

)
=

(
f1B(1−eγ ),C(1−f γ ),S(1−cβ),T(1−dβ),L(1−aα),M(1−bα)

(x0(α, β, γ ), y1(α, β, γ ))

f2B(1−eγ ),C(1−f γ ),S(1−cβ),T(1−dβ),L(1−aα),M(1−bα)
(x0(α, β, γ ), y1(α, β, γ ))

)

=
(

x1(α, β, γ )g1(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))

y1(α, β, γ )g2(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))

)
implies

2x011 = ∂2[x1(α, β, γ ) g1(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))]
∂α2

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

,

2y011 = ∂2[y1(α, β, γ )g2(B̃, C̃, S̃, T̃ , L̃, M̃, x1(α, β, γ ), y1(α, β, γ ))]
∂α2

∣∣∣∣∣
P(α,x,y)=P(0,L,M)

.

Therefore,

2(x011 + x111) = 2

(
1 + L

∂g1

∂x

)
(x011 + x111) + 2L

∂g1

∂y
(y011 + y111) + 2

(
2
∂g1

∂x
+ L

∂2g1

∂x2

)
x2

01 + 2L
∂2g1

∂y2
y2

01

+ 4

(
∂g1

∂y
+ L

∂2g1

∂x∂y

)
x01y01 + 4

(
aL

∂g1

∂L
+ bM

∂g1

∂M
+ aL2 ∂2g1

∂L∂x
+ bLM

∂2g1

∂M∂x

)
x01

+ 4

(
aL2 ∂2g1

∂L∂y
+ bLM

∂2g1

∂M∂y

)
y01 + 2

(
a2L3 ∂2g1

∂L2
+ 2abL2M

∂2g1

∂L∂M
+ b2LM2 ∂2g1

∂M2

)
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and

2(y011 + y111) = 2M
∂g2

∂x
(x011 + x111) + 2

(
1 + M

∂g2

∂y

)
(y011 + y111) + 2M

∂2g2

∂x2
x2

01 + 2

(
2
∂g2

∂y
+ M

∂2g2

∂y2

)
y2

01

+ 4

(
∂g2

∂x
+ M

∂2g2

∂x∂y

)
x01y01 + 4

(
aLM

∂2g2

∂L∂x
+ bM2 ∂2g2

∂M∂x

)
x01

+ 4

(
aL

∂g2

∂L
+ bM

∂g2

∂M
+ aLM

∂2g2

∂L∂y
+ bM2 ∂2g2

∂M∂y

)
y01

+ 2

(
a2L2M

∂2g2

∂L2
+ 2abLM2 ∂2g2

∂L∂M
+ b2M3 ∂2g2

∂M2

)
,

where all the partial derivatives are evaluated at P(L, M). Because we already have x01 and y01 in terms of (B, C, S, T , L, M),
(a, b, c, d, e, f ), g1, g2, and the partial derivatives of g1 and g2, we can view these as two linear equations in x011 + x111
and y011 + y111. These are solved to form

w1 = x011 + x111

2
, v1 = y011 + y111

2
, and u1 = (x011 + x111) + (y011 + y111)

2
.

Similar procedures are performed to obtain formulas for

w2 = x012 + x112

2
, v2 = y012 + y112

2
, and u2 = (x012 + x112) + (y012 + y112)

2

as well as

w3 = x013 + x113

2
, v3 = y013 + y113

2
, and u3 = (x013 + x113) + (y013 + y113)

2
.

The signature functions can now be expressed in terms of (B, C, S, T , L, M), (a, b, c, d, e, f ), g1, g2, and the partial
derivatives of g1 and g2 via

Rd = sign(α(u1α + u2β + u3γ )),

Sd = sign(α(w1α + w2β + w3γ )),

Td = sign(α(v1α + v2β + v3γ )).

Proof of Theorems 5.4 and 5.5 Lemmas 5.1 and 5.2 establish that the average of the 2-cycle predicted in Corollary 4.2
satisfies the equation

x0(α, β, γ ) + x1(α, β, γ )

2
= L + x011 + x111

2
α2 + x012 + x112

2
αβ + x013 + x113

2
αγ + R0(α, β, γ ) + R1(α, β, γ )

2

= L + α(w1α + w2β + w3γ ) + R0(α, β, γ ) + R1(α, β, γ )

2
.

Since

lim
(α,β,γ )→(0,0,0)

R0(α, β, γ )

α2 + β2 + γ 2
= lim

(α,β,γ )→(0,0,0)

R1(α, β, γ )

α2 + β2 + γ 2
= 0,

the sign of

x0(α, β, γ ) + x1(α, β, γ )

2
− L

is the same as the sign of α(w1α + w2β + w3γ ), which is Sd . Therefore, if

x0(α, β, γ ) + x1(α, β, γ )

2
− L > 0,

then the 2-cycle is resonant, and if

x0(α, β, γ ) + x1(α, β, γ )

2
− L < 0,

then the 2-cycle is attenuant and similarly for Theorem 5.4. �
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